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0. Introduction

Lewis, May, and McClure extend ordinary Bredon cohomology theories to RO(G)-graded theories in [7]. Equivariant co-
homology and homotopy theories have had a wide array of applications, in part because of their close connections with
Voevodsky’s motivic cohomology theory. In spite of this, there have been very few published computations of the equiv-
ariant cohomology of specific spaces. Some examples of computations are in [5,6,12]. This paper provides computations of
an important class of Z/2-spaces. In particular, we compute the cohomology of the special orthogonal groups and Stiefel
manifolds with particular Z/2 actions. The main results are stated in Theorem 2.17 and Theorem 3.2.

Section 1 provides some background information on RO(Z/2)-graded cohomology and establishes some definitions and
notation which will be used throughout the paper.

In Section 2 we introduce an equivariant cell structure on SO(p,q), the group of rotations of p-dimensional Euclidean
space endowed with a particular action of Z/2, and use this cell structure to determine the cohomology of SO(p,q) as an
algebra over the cohomology of a point with constant Z/2 Mackey functor coefficients.

In Section 3 we use the cell structure on SO(p,q) from Section 2 to put an equivariant cell structure on Vq(R
p,q), the

Stiefel manifold of q-frames in the Z/2-representation R
p,q with action inherited from R

p,q . The cell structure on the Stiefel
manifold is compatible with the one on SO(p,q) and allows for the cohomology algebra structure of Vq(R

p,q) to be deduced
from that of SO(p,q).

The author wishes to thank the referee for numerous suggestions on how to improve the quality and clarity of this paper.

1. Preliminaries

This section contains some of the background information and notations that will be used throughout the paper. In this
section, G can be any finite group unless otherwise specified.
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Given a G-representation V , let D(V ) and S(V ) denote the unit disk and unit sphere, respectively, in V with action
induced by that on V . A Rep(G)-complex is a G-space X with a filtration X (n) where X (0) is a disjoint union of G-orbits
and X (n) is obtained from X (n−1) by attaching cells of the form D(Vα) along maps fα : S(Vα) → X (n−1) where Vα is an
n-dimensional real representation of G . The space X (n) is referred to as the n-skeleton of X , and the filtration is referred to
as a cell structure. In addition, S V will denote the one-point compactification of V with fixed base point at infinity. If X is
a Rep(G)-complex, then X (n)/X (n−1) ∼= ∨

i S V i where each V i is an n-dimensional G-representation.
The reader is referred to May [9] for details on RO(G)-graded cohomology theories. Briefly, these are theories graded

on the Grothendieck ring of virtual representations of the group G . The natural coefficients for such theories are Mackey
functors. In fact, RO(G)-graded cohomology theories can naturally be thought of as (RO(G)-graded) Mackey functor-valued.
However, this paper will focus on abelian group-valued cohomology theories.

In this paper, the group G will be Z/2. For the precise definition of a Z/2-Mackey functor, the reader is referred to Lewis
et al. [7] or Dugger [3]. The data of a Z/2-Mackey functor M are encoded in a diagram like the one below.

M(Z/2)

t∗ i∗
M(e)

i∗

A p-dimensional real Z/2-representation V decomposes as V = (R1,0)p−q ⊕ (R1,1)q = R
p,q where R

1,0 is the trivial
1-dimensional real representation of Z/2 and R

1,1 is the nontrivial 1-dimensional real representation of Z/2. Thus the
RO(Z/2)-graded theory is a bigraded theory, one grading measuring dimension and the other measuring the number of
“twists”. In this case, we write H V (X; M) = H p,q(X; M) for the V th graded component of the RO(Z/2)-graded equivariant
cohomology of X with coefficients in a Mackey functor M . Similarly, we will write S p,q for S V when V = R

p,q .
In this paper, the Mackey functor will always be constant M = Z/2 which has the following diagram.

Z/2

id 0

Z/2
id

Because this paper only considers this constant Mackey functor, the coefficients will be suppressed from the notation and
we write H p,q(X) for H p,q(X;Z/2). With these constant coefficients, the RO(Z/2)-graded cohomology of a point has the
following description:

H∗,∗(pt) ∼= Z/2

[
τ ,ρ,

θ

τnρm

]/
∼

The relations among the generators give H∗,∗(pt) the following structure. The top cone is a polynomial algebra on the
nonzero elements ρ ∈ H1,1(pt) and τ ∈ H0,1(pt). The nonzero element θ ∈ H0,−2(pt) in the bottom cone is infinitely
divisible by both ρ and τ , and θ2 = 0. It is important to note that neither τ nor ρ have multiplicative inverses in H∗,∗(pt),
yet we write θ

τnρm for the unique nonzero element of H−m,−2−n−m(pt) since τnρm θ
τnρm = θ . The cohomology of Z/2 is

easier to describe: H∗,∗(Z/2) = Z/2[t, t−1] where t ∈ H0,1(Z/2). Details can be found in [3] and [2]. From here on out, we
will denote H∗,∗(pt;Z/2) by HZ/2.

Note that the suspension axioms completely determine the cohomology for the spheres S p,q . If (p,q) �= (1,1), then
H∗,∗(S p,q) = HZ/2[x]/x2 where x is in bidegree (p,q). In the special case of S1,1 we have the following proposition.

Proposition 1.1. As a HZ/2-module, H∗,∗(S1,1) is free with a single generator a in degree (1,1). As an algebra, H∗,∗(S1,1) ∼=
HZ/2[a]/(a2 = ρa).

Proof. See [5]. �
A useful tool is the following exact sequence of [1].

Lemma 1.2 (Forgetful long exact sequence). Let X be a based Z/2-space. Then for every q there is a long exact sequence

· · · H p,q(X)
·ρ

H p+1,q+1(X)
ψ

H p+1(X)
δ

H p+1,q(X) → ·· · .

The map ·ρ is multiplication by ρ ∈ H1,1(pt) and ψ is the forgetful map to non-equivariant cohomology with Z/2
coefficients.

Given a filtered Z/2 space X , for each fixed q there is a long exact sequence

· · · H∗,q(X (n+1)/X (n)
) → H∗,q(X (n+1)

) → H∗,q(X (n)
) → H∗+1,q(X (n+1)/X (n)

) · · ·
and so there is an Atiyah–Hirzebruch spectral sequence for each integer q.
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Proposition 1.3. Let X be a filtered Z/2-space. Then for each q ∈ Z there is a spectral sequence with

E p,n
1 = H p,q(X (n+1), X (n)

)
converging to H p,q(X).

The construction of the spectral sequence is completely standard. (See, for example, Proposition 5.3 of [10].) When the
space X is filtered in such a way that X (n+1) is obtained from X (n) by attaching cells, the collection of the above spectral
sequences for all q will be called the cellular spectral sequence. The cellular spectral sequence will be used extensively in
the computations below.

2. Rotation groups

In this section, we define a Rep(Z/2)-complex structure on the group of rotations SO(n) with a particular action of Z/2.
The construction closely follows that of [4], which in turn is inspired by Miller [11] and Whitehead [13]. The key is to
introduce the correct action of Z/2 on the rotation groups so that the standard constructions are equivariant.

Let O (p,q) denote the group of orthogonal transformations of R
p with the following Z/2-action. Let g denote the

non-identity element of Z/2. Denote by I p,q the block matrix

I p,q =
(

I p−q 0
0 −Iq

)
,

where In is the n × n-identity matrix. Each orthogonal transformation of R
p can be represented as an orthogonal matrix A

with det A = ±1. Define

g · A = I p,q AI p,q.

That is, g acts on A by changing the sign on the last q entries of each row and each column. If we represent A as a block
matrix

A =
(

A1 A2
A3 A4

)
,

where A1 is (p − q) × (p − q) and A4 is q × q, then

g · A =
(

A1 −A2
−A3 A4

)
.

Notice that det(g · A) = det(I p,q)det(A)det(I p,q) = det(A) and so g preserves determinant. Also, it is easy to check that if
A, B ∈ O (p,q), then g · (AB) = (g · A)(g · B). In particular, this action of g induces an action on the subgroup of rotations
which will be denoted by SO(p,q).

Let P(Rp,q) denote the space of lines in R
p,q with action inherited from the action on R

p,q which fixes the first p − q
coordinates and acts as multiplication by −1 on the last q coordinates. Define a map ω : P(Rp,q) → SO(p,q) as follows:

ω(v) = r(v)r(e1)

where r(v) denotes reflection across the hyperplane orthogonal to v and e1 = (1,0, . . . ,0) ∈ R
p,q . Notice that ω(v) is the

product of two reflections, whence a rotation. In addition, the map ω is a Z/2-equivariant map.
Now, choose a flag 0 = V 0 ⊂ V 1 ⊂ · · · ⊂ V p = R

p,q such that g · V i = V i and dim(V i ∩ V i+1) = 1 for all i = 0,1, . . . , p − 1.
For example, declaring V i = {(x1, x2, . . . , xi,0,0, . . . ,0)} is such a flag. This flag gives rise to a sequence of inclusions P(V 1) ⊂
P(V 2) ⊂ · · · ⊂ P(V p). In addition, we can define equivariant maps ω : P(V i) → SO(p,q) by restricting the map ω above. For
the sake of brevity, write P i for P(V i) and P I for P i1 × · · · × P im where I is a sequence (i1, . . . , im) with each i j < p.
Then we have an equivariant map ω : P I → SO(p,q) given by ω(v1, . . . , vm) = ω(v1) · · ·ω(vm). (The action of Z/2 on P I is
diagonal.) Sequences I = (i1, . . . , im) for which p > i1 > · · · > im > 0 and the sequence consisting of a single 0 will be called
admissible.

If ϕ i : Di → P i is the characteristic map for the i-cell of P i , then the product ϕ I : D I → P I of the appropriate ϕ i j ’s is a
characteristic map for the top-dimensional cell of P I .

Proposition 2.1. The maps ωϕ I : D I → SO(p,q), for I ranging over all admissible sequences, are the characteristic maps of a
Rep(Z/2)-complex structure on SO(p,q) for which the map ω : Pn−1 × · · · × P 1 → SO(p,q) is cellular.

Proof. The proof is a matter of adapting the proof of the non-equivariant statement in [4, Proposition 3D.1]. Consider
SO(p − 1,q − 1) the subset of SO(p,q) which fixes ep . Then Hatcher’s maps p : SO(p,q) → S(Rp,p−q), h : (P p−1 ×
SO(p − 1,q − 1), P p−2 × SO(p − 1,q − 1)) → (SO(p,q), SO(p − 1,q − 1)), and h−1 : SO(p,q) − SO(p − 1,q − 1) → (P p−1 −
P p−2) × SO(p − 1,q − 1), given by p(α) = α(ep) and h(v,α) = ρ(v)α, are equivariant with the above defined action of Z/2
on SO(p,q).
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For the induction, notice that SO(p − q,q − q) has the trivial Z/2-action and so has a Rep(Z/2)-complex structure using
cells which arise from trivial representations. Thus the inductive process begins with SO(p − q, p − q) and continues as
in [4], and so SO(p,q) has a Rep(Z/2)-complex structure.

The statement about the map ω being cellular is also immediate. �
The freeness theorem from Kronholm [5] and the previous proposition give the corollary below. (Recall that the coeffi-

cient Mackey functor is Z/2.)

Theorem 2.2 (Freeness theorem). If X is a connected, locally finite, finite dimensional Rep(Z/2)-complex, then H∗,∗(X) is a free
HZ/2-module.

Corollary 2.3. H∗,∗(SO(p,q)) is a free HZ/2-module.

Remark 2.4. Varying the flag 0 = V 0 ⊂ V 1 ⊂ · · · ⊂ V p = R
p,q will alter the cell structure of the projective spaces involved,

and hence the cell structure on SO(p,q).

In light of this remark, it will be convenient to impose a standard cell structure on the real projective spaces. For
further convenience, we will restrict attention to the case where p = n and q = 
 n

2 � and, following the notation in [5], let

RP
n
t w = P(Rn+1,
 n+1

2 �) denote the equivariant space of lines in R
n+1,
 n+1

2 � . For example, RP
3
t w = P(R4,2), RP

4
t w = P(R5,2),

and RP
1
t w = S1,1. Considering a Schubert cell decomposition of RP

n
t w yields the following lemma.

Lemma 2.5. RP
n
t w has a Rep(Z/2)-structure with cells in dimension (0,0), (1,1), (2,1), (3,2), (4,2), . . ., (n, � n

2 ).

Proof. See [5]. �
With this cell structure, there is an additive basis for H∗,∗(RP

n
t w) where the bidegrees of the generators agree with the

dimensions of the cells.

Proposition 2.6. As a HZ/2-module, H∗,∗(RP
n
t w) is free with a single generator in each degree (k, � k

2 ) for k = 0,1, . . . ,n.

Proof. See [5]. �
In this particular case, Proposition 2.1 indicates that SO(n, 
 n

2 �) has a cell structure with one cell for each admissible

sequence I = (i1, . . . , im). These cells are the top cells of the spaces P I = RP
i1
t w × · · · × RP

im
t w . Thus, SO(n, 
 n

2 �) has cells in

bijection with the cells of S1,1 × S2,1 × S3,2 × S4,2 × · · · × Sn−1,� n−1
2  .

Example 2.7. Consider SO(5,2). The admissible sequences provide a cell structure with cells in dimensions (0,0), (1,1),
(2,1), (3,2), (3,2), (4,2), (4,3), (5,3), (5,3), (6,3), (6,4), (7,4), (7,4), (8,5), (9,5), and (10,6). By considering the for-
getful long exact sequence, we see that H∗,∗(SO(5,2)) is additively generated by generators with bidegrees matching the
dimensions of these cells.

In general, we cannot rely on the forgetful long exact sequence to determine an additive basis for H∗,∗(SO(p,q)). A gen-
eral Rep(Z/2)-complex X may have “dimension shifting” differentials in the cellular spectral sequence. These dimension
shifting differentials are nontrivial maps (with nontrivial kernels and cokernels) which cause H∗,∗(X) to have generators in
bidegrees which do not match the dimensions of the cells. (See [5] for examples of this behavior in Grassmann manifolds.)
However, the following theorem tells us that there is an additive basis for H∗,∗(SO(p,q)) with generators in bijection with
the cells in the above cell structure, and with bidegree agreeing with the dimensions of the cells.

Theorem 2.8. The cellular spectral sequence for SO(n, 
 n
2 �), with the Rep(Z/2)-complex structure given above, has no nontrivial

differentials, hence collapses at the E1 page, and H∗,∗(SO(n, 
 n
2 �)) ∼= H∗,∗(S1,1 × S2,1 × · · · × Sn−1,� n−1

2 ), as HZ/2-modules.

Proof. First note that there are no nontrivial differentials in the cellular spectral sequence for the product of projective
spaces since there are no nontrivial differentials in the spectral sequences for each individual projective space.
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The map ω from the construction of the cell structure allows for a comparison of the cellular spectral sequence for
SO(n, 
 n

2 �) with that of the product of projective spaces P I . This comparison implies there are no nontrivial differentials in
the cellular spectral sequence for SO(n, 
 n

2 �). Explicitly, we can consider the following commutative diagram.

H∗,∗(SO(n, 
n
2 �)(k))

ω∗

δ

H∗,∗((P I )(k))

δ=0

H∗+1,∗(
∨

i S V i )
ω∗

H∗+1,∗(
∨

j S V j ).

Here, X (k) denotes the k-skeleton, δ is the connecting homomorphism in the long exact sequence of the pair (X (k+1), X (k)),
and ω∗ is the map induced by ω. The V i ’s and V j ’s are k-dimensional Z/2-representations. The construction of the cell
structure ensures that the lower ω∗ is an isomorphism and the specific choice of cell structure on P I ensures that the
right-hand δ is zero. Thus, the left-hand δ must also be zero. These δ’s determine the differentials in the cellular spectral
sequence, hence all differentials are zero in the cellular spectral sequence for SO(n, 
 n

2 �).
Since the stated product of spheres has a cell structure with cells of the same dimension as SO(n, 
 n

2 �), the result
follows. �
Remark 2.9. For general p and q, projective spaces other than RP

n
t w are involved (e.g. P(R8,2), etc.). However, these projec-

tive spaces can also be given cell structures for which the cellular spectral sequence has no nontrivial differentials. (See [5].)
Thus, an analogous statement is true about the spaces SO(p,q), although it is a little more cumbersome to describe the
appropriate product of spheres in the general case.

Theorem 2.10. For all p and q, the cellular spectral sequence for SO(p,q), with the Rep(Z/2)-complex structure given above, has no
nontrivial differentials, hence collapses at the E1 page.

The isomorphism in the above theorem determines the HZ/2-module structure of H∗,∗(SO(n, 
 n
2 �)). We wish to say

something about the HZ/2-algebra structure. For this, we will need to compare H∗,∗(SO(n, 
 n
2 �)) with H∗,∗(P I ) where

I = (n − 1,n − 2, . . . ,1) using the map ω above. We recall the following result from Kronholm [5] which describes the
HZ/2-algebra structure of RP

∞
t w = P(U) where U ∼= (R2,1)∞ is a complete Z/2-universe in the sense of [9].

Theorem 2.11. H∗,∗(RP
∞
t w) = HZ/2[a,b]/(a2 = ρa + τb), where deg(a) = (1,1) and deg(b) = (2,1).

Proof. See [5]. �
The natural inclusions RP

n
t w → RP

∞
t w determine the algebra structure for the cohomology of the finite projective spaces.

Theorem 2.12. Let n � 2. Let deg(a) = (1,1) and deg(b) = (2,1). If n is odd, then H∗,∗(RP
n
t w) = HZ/2[a,b]/ ∼ where the generat-

ing relations are a2 = ρa + τb and bk = 0 for k � n+1
2 . If n is even, then H∗,∗(RP

n
t w) = HZ/2[a,b]/ ∼ where the generating relations

are a2 = ρa + τb, bk = 0 for k > n
2 , and a · bn/2 = 0.

If n = 1, then H∗,∗(RP
1
t w) = H∗,∗(S1,1) ∼= HZ/2[a]/(a2 = ρa).

Proof. See [5]. �
The space P I above is the product of projective spaces P I = RP

n−1
t w × · · · × RP

1
t w . In the non-equivariant setting (with

constant Z/2 coefficients), H∗(RP
k) is free as a H∗(pt)-module (H∗(pt) ∼= Z/2), and so the Künneth theorem tells us that

H∗(RP
n−1 ×· · ·×RP

1) ∼= H∗(RP
n−1)⊗· · ·⊗ H∗(RP

1) as H∗(pt)-algebras. (Here the tensor products are taken over H∗(pt).)
We would like a similar statement about the RO(Z/2)-graded cohomology of the product of projective spaces P I . To do this,
we need the following version of the Künneth spectral sequence from [8]. This Künneth theorem is phrased in terms of
homological algebra of Mackey functors and views RO(G)-graded cohomology as Mackey functor-valued, rather than abelian
group-valued.

Theorem 2.13 (Künneth theorem). Let R∗ be an RO(G)-graded Mackey functor ring which represents the RO(G)-graded cohomology
theory E∗ . Let X and Y be G-spectra indexed on the same universe. There is a natural conditionally convergent cohomology spectral
sequence of R∗-modules

Es,τ
2 = Exts,τ

R∗
(

R−∗ X, R∗Y
) ⇒ Rs+τ (X ∧ Y ).
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In particular, if either R∗ X or R∗Y is projective, then the spectral sequence collapses at the E2-page and the E2-page
can be identified as R∗ X �R∗ R∗Y . The edge homomorphism is then an isomorphism.

The box product � for Mackey functors satisfies (M � N)(G/G) ∼= M(G/G) ⊗ N(G/G). Since each of H∗,∗(RP
k
t w) is a free

HZ/2-module, hence projective, the Künneth theorem yields that H∗,∗(P I ) ∼= H∗,∗(RP
n−1
t w ) ⊗ · · · ⊗ H∗,∗(RP

1
t w) as HZ/2-

algebras. (Here the tensor products are taken over HZ/2.)

In principal, we can use the map ω : P I → SO(p,q) to determine the algebra structure of H∗,∗(SO(p,q)) from the algebra
structure of H∗,∗(P I ). We begin with an example.

Example 2.14. Consider SO(4,2). We have the map ω : RP
3
t w × RP

2
t w × RP

1
t w → SO(4,2) which is cellular. Because ω deter-

mines the Rep(Z/2)-structure on SO(4,2) and there are no dimension shifting differentials in the cellular spectral sequence
for SO(4,2), the map ω∗ : H∗,∗(SO(4,2)) → H∗,∗(RP

3
t w × RP

2
t w × RP

1
t w) is injective. In addition, ω can be thought of as

giving an embedding RP
3
t w → SO(4,2).

Write H∗,∗(RP
3
t w) = HZ/2[a3,b3]/∼, H∗,∗(RP

2
t w) = HZ/2[a2,b2]/∼, and H∗,∗(RP

3
t w) = HZ/2[a1]/∼ where each ai has

bidegree (1,1), each bi has bidegree (2,1), and ∼ denotes the appropriate equivalence relation as stated in Theorem 2.12.
For i = 1,2,3, let βi be the cohomology generator corresponding to the embedded i-dimensional cell of RP

3
t w . Then

ω∗(β1) = a1 + a2 + a3, ω∗(β2) = b2 + b3, and ω∗(β3) = a3b3. From Theorem 2.8 we know that H∗,∗(SO(4,2)) is freely
generated with generators in bidegrees (0,0), (1,1), (2,1), (3,2), (3,2), (4,3), (5,3), and (6,4). We wish to see that each
of these generators can be expressed as products of the βi ’s. Already we have that β1 is a free generator in bidegree (1,1),
β2 is a free generator in bidegree (2,1), and β3 is a free generator in bidegree (3,2). Computing yields the following:

– β2
1 = ρβ1 + τβ2,

– β3
1 = ρβ2

1 + τβ1β2 �= 0, from which it can be inferred that β1β2 is a free generator in bidegree (3,2),
– β2

2 = 0,
– β1β3 is a free generator in bidegree (4,3),
– β2β3 is the free generator in bidegree (5,3),
– β2

3 = 0,
– β1β2β3 is the free generator in bidegree (6,4).

These results are summarized in the proposition below.

Proposition 2.15. As an HZ/2-algebra, H∗,∗(SO(4,2)) ∼= HZ/2[β1, β2, β3]/∼, where βi is in bidegree (i, �i/2) and ∼ is generated

by β2
1 = ρβ1 + τβ2 , β2

2 = 0, and β2
3 = 0.

Remark 2.16. It is worthwhile to notice that ψ(H∗,∗(SO(4,2))) ∼= Z/2[β1, β3]/(β3
1 , β2

3 ) and this is precisely H∗(SO(4);Z/2).
(Notice that ψ(β2) = ψ(β2

1 ).)

In general, we have the following result.

Theorem 2.17. Let p > 1 and q = 
p/2�. Then as an HZ/2-algebra,

H∗,∗(SO(p,q)
) ∼= (

HZ/2[β1, β2]/
〈
β2

1 = ρβ1 + τβ2, β
n2
2

〉) ⊗
⊗

i�3, i odd

HZ/2[βi]/
〈
β

ni
i

〉

where βi has bidegree (i, �i/2) and ni is the smallest power of 2 such that i · ni � p for i � 2.

Proof. Write H∗,∗(RP
k
t w) ∼= HZ/2[ak,bk]/∼ as in Theorem 2.12. For i = 1, . . . , p −1, let βi be the cohomology generator cor-

responding to the embedded i-dimensional cell of RP
p−1
t w . Then ω∗(βi) = ∑p−1

j=i a jb
(i−1)/2
j if i is odd and ω∗(βi) = ∑p−1

j=i bi/2
j

if i is even. In particular, ω∗(β1) = ∑p−1
j=1 a j and so ω∗(β2

1 ) = ∑p−1
j=i (a j)

2 = ∑p−1
j=i ρa j + τb j = ω∗(ρβ1 + τβ2). Since ω∗ is

an injection, β2
1 = ρβ1 + τβ2. Similarly, if i > 1 then β2

i = β2i if 2i < p and β2
i = 0 if 2i � p.

We shall see that the monomials βI ∈ H∗,∗(SO(p,q)) corresponding to admissible sequences are linearly independent.
Suppose

∑
λIβI = 0 with each λI ∈ HZ/2. Rewrite this equation as xβ1 + y = 0 where neither x nor y has a factor of β1.

Then after applying ω∗ to this equation, we can write xa1 + z = 0 where z has no factor of a1, since a1 only appears in
ω∗(β1). From this we conclude that x = 0 and so β1 does not appear in

∑
λIβI . Since b2 only appears in ω∗(β2), a similar

argument shows that β2 does not appear in the linear dependency
∑

λIβI . Continuing, a3b3 appears only in ω∗(β3), again
implying that β3 does not appear in the linear dependency. Continuing in this way, we see that λI = 0 for all I , and so the
monomials corresponding to admissible sequences are linearly independent in H∗,∗(SO(p,q)).

Let A be the HZ/2-algebra HZ/2[β1, β2, . . .]/∼ where the relations are β2
1 = ρβ1 + τβ2, β2

i = β2i if 2i < p, and β2
i = 0

if 2i � p. The preceding observations are enough to see that there is a surjective map A → H∗,∗(SO(p,q)) sending βi �→ βi .
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The relations in A allow each element of A to be expressed as a linear combination of monomials βI = βi1βi2 · · ·βin for
admissible sequences I . These monomials are linearly independent in H∗,∗(SO(p,q)), hence also in A, and so the map
A → H∗,∗(SO(p,q)) is an isomorphism.

The relations β2
i = β2i and β2

1 = ρβ1 + τβ2 allow the admissible monomials βI of A to be uniquely expressed in terms
of β1, β2, and βi for i � 3 and odd. The relation β j = 0 for j � p can be written as βini = β

ni
i = 0 where j = ini with i odd

and ni a power of 2. This relation holds if and only if i · ni � p. Hence, A can be expressed as the tensor product in the
statement of the theorem. �

Remark 2.16 generalizes as well.

Corollary 2.18. Let p > 1 and q = 
p/2�. Then the forgetful map ψ : H∗,∗(SO(p,q) → H∗(SO(p)) is surjective and ψ(βi) = βi .

Proof. We have the following commutative diagram:

H∗,∗(SO(p,q))
ω∗

ψ

H∗,∗(P I )

ψ

H∗(SO(p))
ω∗

H∗(P I )

From Kronholm [5] we have that ψ(ai) is the generator α ∈ H1(RP
i) and ψ(bi) = α2. In addition, ψ(τ ) = 1 and ψ(ρ) = 0 in

H0(pt). Commutativity of the above diagram assures that the definition of the βi ’s in equivariant cohomology is consistent
with the corresponding βi ’s in non-equivariant cohomology, and so ψ(βi) = βi for all i. �
3. Stiefel manifolds

Let Vk(R
p,q) denote the Stiefel manifold of k-frames in R

p,q with action inherited from the one on R
p,q . There is an

equivariant projection π : O (p,q) → Vq(R
p,q) sending A ∈ O (p,q) to the q-frame consisting of the last q columns of A.

For simplicity, we will restrict to the case where p > 1 and q = 
 p
2 �. The projection π : SO(p,q) → Vq(R

p,q) is surjective
and we can view Vq(R

p,q) as the coset space SO(p)/SO(p − q) with action inherited from SO(p,q). From this viewpoint,
we can give Vq(R

p,q) a Rep(Z/2)-complex structure. The cells are the sets of cosets corresponding to admissible sequences
I = (i1, . . . , im) where p > i1 > · · · > im � p −q. Since the Stiefel manifold has a Rep(Z/2)-complex structure, its cohomology
is free as a HZ/2-module. The following theorem shows there are no dimension shifting differentials.

Theorem 3.1. Let p > 1 and q = 
 p
2 �. Then the cellular spectral sequence for Vq(R

p,q) with the above Rep(Z/2)-complex structure,

collapses at the E1 page. In particular, H∗,∗(Vq(R
p,q)) ∼= H∗,∗(S p−q,� p−q

2  × · · · × S p−1,� p−1
2 ), as HZ/2-modules.

Proof. The additive cohomology generators of H∗,∗(S p−q,� p−q
2  × · · · × S p−1,� p−1

2 ) are in bijection with the admissible se-
quences I = (i1, . . . , im) where p > i1 > · · · > im � p − q. Comparison with SO(p,q) shows that there are no nontrivial
differentials in the cellular spectral sequence for Vq(R

p,q). Thus, H∗,∗(Vq(R
p,q)) is free with generators in bijection with

the cells and with bidegrees agreeing with the dimensions of these cells. �
Following Miller [11], we will denote by [i1, . . . , in] the cohomology generator corresponding to the admissible sequence

I = (i1, . . . , in). The previous theorem implies that these classes form an additive basis for H∗,∗(Vq(R
p,q)). We further make

the conventions that [i1, . . . , in] = [iλ(1), . . . , iλ(n)] for any permutation λ of the indices, and that [i1, . . . , in] = 0 if some
ik < p − q, if some ik � p, or if some ik = i j for k �= j. We also denote by [0] the generator corresponding to the admissible
sequence I = (0).

Theorem 3.2. Let p > 2 and q = 
p/2�. As an HZ/2-algebra, H∗,∗(Vq(R
p,q)) is multiplicatively generated by [0] and all [i] with

p > i � p − q subject only to the relations

– [0] is the unit, and

– [i] ∪ [ j] =
{ [i, j] if i + j < p,

0 if i + j � p.

Proof. The map π : SO(p,q) → Vq(R
p,q) is by definition cellular and we can compare the cellular spectral sequences for

each space to see that π induces an injection π∗ : H∗,∗(Vq(R
p,q)) → H∗,∗(SO(p,q)). For each admissible sequence I =

(i1, . . . , in), π∗([i1, . . . , in]) = βi1 · · ·βin . (Since we are assuming p > 2, none of the ik ’s are 1’s and we need not concern
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ourselves with the relation β2
1 = ρβ1 + τβ2.) In particular, π∗([i] ∪ [ j]) = βiβ j = π∗([i, j]), and so [i] ∪ [ j] = [i, j]. This class

is zero if and only if i + j � p. The assumptions on p and q force 2i � p since i � p − 
p/2�, so [i] ∪ [i] = 0 for all i. �
Notice that Miller [11] provides more detail about the product structure in the non-equivariant setting. Namely,

[i] ∪ [ j1, . . . , jn] = [i, j1, . . . , jn] + ∑
k[ j1, . . . , jk + i, . . . , jn] in H∗(Vq(R

p)). However, in the setting of the theorem, i and
all of the j′ks are between p and p − 
p/2�. Thus i + jk � p and so the summation term above is zero. In addition we
necessarily have that [i] ∪ [i] = [2i] = 0 in the non-equivariant setting, as mentioned in the proof above.

If p = 2, then the Stiefel manifold V 1(R
2,1) can be identified with S(R2,1) ∼= S1,1 and the cohomology of this space has

already been determined.
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