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Abstract 

We give various conditions on pinched-torus polyhedral maps which are necessary for their graphs 

to be embeddable in the projective plane. Our other main result is that even if the graph of 

a polyhedral map in the pinched torus is embeddable in a projective plane, the map induced by the 

embedding cannot be polyhedral, but must have all faces bounded by cycles. Finally, we give a class 

of examples of graphs which have polyhedral embeddings on the pinched torus and also on 

orientable surfaces of arbitrary high genus. 

1. Introduction 

In [7] it is shown that no polyhedral map on a 2-manifold is planar, and in 

[3] necessary conditions are given for such maps to be projective planar. In 

[6] is given a more restrictive condition for polyhedral maps on the torus to 

be projective planar. In this paper, we give similar conditions necessary for a 

polyhedral map on the pinched torus to be projective planar. We also show that if 

a polyhedral map on the pinched torus is embeddable in the projective plane, then the 

embedding cannot produce a polyhedral map, but must produce a closed 2-cell map. 

We give examples to show that in general, this situation is unique to projective plane 

embeddings by exhibiting a family of polyhedral maps on the pinched torus which 

have polyhedral embeddings on orientable surfaces of arbitrarily high genus. This 

family of examples is the pinched-toroidal analog of a family of examples given for the 

torus in [l], and is also similar to a class of examples given for the torus by 

Thomassen [7]. 
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2. Definitions 

A surface is a compact 2-manifold, and we denote the orientable surface of genus 

k by Sk. A pseudosurface P is a topological space obtained from a surface S by 

choosing finitely many sets V1, . . . , Vk of finitely many different points of S, and 

identifying all the points in Vi, for i = 1, . . . , k. We denote such a P by S( 1 VI 1, . . . ,I Vkl). 

The point in P obtained from K is denoted Ui, and such points of P are called pinch 

points. The index of a pinch point Ui is 1 vi\. By convention, we label pinch points so 

that 1 Kl d) I$+ 1 1. We follow the convention that in any embedding of a graph in 

a pseudosurface there is a vertex at each pinch point. Such vertices are called pinch 

vertices. 

In this paper, all graphs are without loops, multiple edges, or 2-valent vertices. 

A map is an embedding of a graph in a surface or pseudosurface. A map is called closed 
2-cell provided that the closure of each region is a 2-cell. If no ambiguity is likely to 

arise, we often do not distinguish a region from its bounding circuit, nor a map from 

its underlying graph. Two intersecting regions of a map are said to meet properly if 

their union is not multiply connected. A polyhedral map is one in which every two 

regions meet properly if at all. Note that we use the termface interchangeably with the 

term region. 

The pinched torus is the pseudosurface S,(2). Note that in the literature the pinched 

torus is also referred to as the pinched sphere and the spindle surface. A polyhedral map 

on the pinched torus is called a pinched polyhedral map. The link of the pinch vertex of 

a pinched polyhedral map M consists of two disjoint cycles, called the center circuits of 

M. The closed annulus bounded by the center circuits is called the center strip of M. 

Removing an edge from a map means just that, along with coalescing any 2-valent 

vertices which may be created into the edges in which they lie. Shrinking an edge of 

a map means contracting it to a point, along with coalescing any created multiple 

edges which bound a face. The inverses (in the sense of ‘inverse relation’ and not 

‘inverse function’) of these two operations are calledface splitting and vertex splitting, 

respectively. A polyhedral map is said to be R-minimal (resp. S-minimal) if removing 

(resp. shrinking) any edge yields a nonpolyhedral map. If a map is minimal with 

respect to both, it is called diminimal. The one diminimal pinched polyhedral map was 

determined by the author [5], and is shown in Fig. 1. Note that the pinched torus is 

represented as a ‘lens’, where the upper and lower arcs are identified to form an 

elongated sphere, and then the two pointed ends are identified to form the pinch- 

point. Often vertices and/or edges of the map will lie on the boundaries of the lens. If 

x, y, and z are vertices on a cycle C of a graph G, then C [x, y, + z] denotes the path on 

C from x to y which includes z, whereas C [x, y, - l] denotes the path on C from x to 

y which misses z. 

A diagonal of a cycle C in a graph G is an edge e&C, but with its endpoints in C. 

A nonseparating circuit of a graph G is a cycle C in G with no diagonals such that 

G - C is connected. Note that diagonals are also known as chords, and nonseparating 

circuits are also known as peripheral circuits. Finally, a nonplanar circuit of a map 



Embeddings of polyhedral pinched maps 283 

b 

b e 

Fig. 1. 

M in a surface or pseudosurface S is one which does not bound a cellular region of S. 

Note that in contrast to the case of surfaces, a nonplanar circuit of a map on 

a pseudosurface may in fact be contractible to a point. It is known that for surfaces, 

a map being polyhedral is equivalent to the condition that it is 3-connected and every 

nonplanar curve in the surface meets the map in at least three points. This is quite 

clearly true in the case of pseudosurfaces as well. Note that any terms concerning 

graphs which are not defined here can be found in [4], whereas any terms concerning 

maps which are not defined here can be found in [l-3, 51. 

3. Preliminary lemmas 

In [2], Barnette proves the following lemma. 

Lemma 3.1. A face of a polyhedral map on a surface is a nonseparating circuit. 

However, his proof uses map duality and is thus invalid for maps on pseudosurfa- 

ces. Thus we prove the following lemma. 

Lemma 3.2. A face of a polyhedral map on a pseudosurface is a nonseparating circuit. 

Proof. Let vi, . . . , vk be the pinch vertices of M. Let ni be the index of vi. Let N be a 

polyhedral map on an appropriate surface, containing vertices ~(1, l), . . . , $1, nl), 

42, I), . , . ,G, 4, . . . , o(n, l), . . . , o(n, n,J such that Vi= {v(i, l), . . , o(i, ni)}. That is, 

N is a polyhedral map on a surface obtained by ‘detaching’ the pinch vertices of M. 

Clearly the regions of N are in one-to-one correspondence with the faces of M. Let 

x and y be two vertices of M, and let F be a region of M, with x, y$F. Since no face of 

a polyhedral map has a diagonal, we need only show that M-F is connected. 

If vi$F for any i, then by Lemma 3.1 there is a path from x0 to y, in N missing F, 

which, upon identification of each Vi to recover M, becomes a trail from x0 to y,, 

which contains a path in M from x0 to y,. 
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Fig. 2. 

On the other hand, if UiEP for some values of i, then without loss of generality 

(w.1. o.g.), we may assume that vi, . . . , DjE F, j < k. Let G be the region of N correspond- 

ing to F. Without loss of generality, we may assume that ~(1, l), 42, l), . . . , v( j, l)eG. If 

in N there is an xoyo path missing G which does not touch any of u(m, n), 1 drn< j, 

2 dn<n,, then that path, upon identification of each 6, will yield an xy trial in M. 

Thus we may assume that every xoyo path missing G meets some v(m, n) with 1 <m < j, 

2<n<n,. Let P be such a path with a minimum number of such meetings. Without 

loss of generality, we may assume that ~(1, ~)EP. Let ui be the vertex in Pnlink,u(l, 2) 

which is closest to x o. Note that link,v(l, 2) cannot contain any of u(m, n), 1 <m < j, 

2 d n < n, since, if it did, F would meet itself or some other face in starMu, improperly 

in M. Thus replacing the segment ui - ~(1, 2)-u2 in P with either path from u1 to 

u2 on link,v(l, 2) will produce an xoyo path in N with fewer such intersections than P. 

This contradicts facts hypothesized about P, and so the lemma is proved (see 

Fig. 2). 0 

We represent the projective plane ZZ as a disk with antipodal points identified. The 

following result should be clear. 

Lemma 3.3. A nonseparating circuit in a graph embedded in a surface or pseudosurface 

must be either nonplanar or be a face of the map, 

In our representations of maps embedded on n, it is usually convenient to have 

a nonplanar cycle of the map on the boundary of the disk. The topology of l7 is such 

that any such cycle can be chosen to lie on the boundary of the disk. Due to the 

identification, the cycle appears twice around the boundary of the disk. We will also 

need the following lemma. 
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Lemma 3.4. Let C be a nonseparating circuit in a graph G. Let H be obtained from G by 

shrinking C to a vertex. If H is a nonplanar graph, then C must be a region in any 

H-embedding of G. 

Proof. If C is not a face in a n-embedding of G, then by Lemma 3.3, C is a nonplanar 

circuit, and so can be drawn twice around the boundary of the disk. Contracting C to 

a vertex yields an embedding of H on the sphere, contrary to assumption. U 

4. II-Embeddings of pinched polyhedral maps 

Riskin proved [S] that there are 70 R-minimal pinched polyhedral maps, and that 

they are all obtainable from the one diminimal pinched polyhedral map (Fig. 1) by 

splitting zero or more of the 4-valent vertices into pairs of 3-valent vertices. 

Lemma 3.5. Let M be a pinched polyhedral map. Then M contains a submap N which is 

homeomorphic to one of the 70 R-minimal pinched polyhedral maps, and which has the 

same center circuits as M. 

Proof. Removing all removable edges from M without coalescing Z-valent vertices 

will yield a submap homeomorphic to one of the 70 R-minimal pinched polyhedral 

maps. Note that removing a removable edge changes which edges are removable, and 

thus there are generally many ways in which this can be done. Suppose the lemma is 

false. Among all submaps of M homeomorphic to an R-minimal pinched polyhedral 

map, let N be one minimal with respect to the number of edges in the symmetric 

difference of its center circuits with the center circuits of M. Let C and D be the center 

circuits of M and let P and Q be the center circuits of N. We may assume w.1.o.g. 

that there is an edge eEP with e$CuD, and that P lies in a region bounded by C 

and Q. Since N is homeomorphic to one of the R-minimal pinched polyhedral maps, 

there are paths S and T in N from the pinch vertex p to P which cross C. Let 

b,c,d, and f be vertices contained in SnC, TnC, PnS, and PnT, respectively 

(see Fig. 3). Now, let F be that bc-path on C which forms a planar circuit with 

S[b,d]vP[d,f; +e]uT[c, f]. Then replacing P[d,J; +e] in N by FuS[b,d]uT[c, f] 

yields a map homeomorphic to an R-minimal pinched polyhedral map, but whose 

center circuits meet the center circuits of M in more edges. 0 

We restate this result as follows. 

Corollary 4.1. Given a pinched polyhedral map M, it is possible to remove all removable 

edges of M in such a way that the center circuits of the R-minimal pinched polyhedral 

map thus obtained are composed solely of edges or unions of edges from the center 

circuits of M. 
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Fig. 3. 

Lemma 4.2. Let C be a nonplanar, nonseparating circuit in the center strip of a pinched 
polyhedral map M. If C is disjoint from at least one of the center circuits of M, then 
C must be a face in any n-embedding of M. 

Proof. Removing all removable edges from M in accordance with Corollary 4.1 yields 

one of the 70 R-minimal pinched polyhedral maps N. N has three nonplanar cycles 

P, Q, and R that meet each of the center circuits of N in at least a vertex and at most an 

edge, and having PnQnR = {p}, where p is the pinch vertex. Since the center circuits 

of M and N are coincident, adding the edges back to N of which C is comprised will 

produce a nonplanar, nonseparating circuit in N which is still disjoint from one of the 

centre circuits. Then contracting C to a point yields a graph of which K5 is a subcon- 

traction. Thus by Lemma 3.4, C is a face in any U-embedding of M. q 

The next two theorems are analogous to a theorem of Riskin [6] which states that 

a polyhedral map on the torus with four disjoint homotopic nonplanar circuits is not 

Il-embeddable. 

Theorem 4.3. If a pinched polyhedral map M has three disjoint circuits homotopic to the 
pinch vertex, then M is not lI-embeddable. 

Proof. Let A, B, and C be the circuits mentioned above. We may assume w.1.o.g. that 

A and B bound a region which contains C, and thus that C lies in the interior of the 

center strip of M. Removing all removable edges of M pursuant to Corollary 4.1, and 

replacing the edges of which C is comprised yield a map of which the map N given in 

Fig. 4 is a subcontraction. Clearly if M is I7-embeddable, then so is N. By Lemma 4.2, 

cycle efge must be a face in any n-embedding of N. By Lemma 3.4, both cycle befcb 
and cycle ehife must also be faces in a II-embedding of N. That makes three faces 

containing edge ef; so no II-embedding of N is possible. q 

Theorem 4.4. lf a pinched polyhedral map M has 4 nonplanar circuits not contractible to 

the pinch vertex and containing the pinch vertex but otherwise disjoint, then M is not 
II-embeddable. 
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Fig. 5. 

Proof. By arguments completely analogous to those used in the proof of Theorem 4.3, 

M has the map N, shown in Fig. 5, as a subcontraction. By Lemma 4.2, cycles bcdeb 

andfgh$must be faces in a II-embedding of N, and by Lemma 3.4, each of the four 

square faces in the center strip must be as well. But now the faces containing vertex 

c ‘close out’ a rotation at c which does not contain edge pc. 0 

Using methods very similar to those used in the proof of Theorem 4.4, the following 

lemma can be easily proved. 

Lemma 4.5. At least one of the 6 triangles containing the pinch vertex must be a face in 

any n-embedding of the diminimal pinched polyhedral map. 

We will also need the following lemma. 

Lemma 4.6. Up to map-isomorphism, there are exactly two II-embeddings of the 
diminimal pinched polyhedral map D. 

Proof. By Lemma 4.5, we may assume that cycle pbcp is a face in a H-embedding of 

D (all vertices are labelled as in Fig. 1). By Lemma 3.4, bcdb must also be a face in 

a II-embedding, and thus cycle befcb must fail to be a face, and so the disk of the 
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n-embedding can be drawn with that cycle twice around the boundary. Furthermore, 

Lemma 3.4 forces efse to be a face, and there is exactly one way for the three faces 

pbcp, bcdb, and efge to lie in relation to befcb. Vertex p must lie in the octagonal region 

cdgjcbef, and so the places of edges pd, pe, pb, and pg are determined (see Fig. 6). Up to 

map-isomorphism, there are exactly two ways in which the remaining edges pc and pf 
can be added, yielding the two Ii’-embeddings of D (see Fig. 7). 0 

We are now in a position to prove the following theorem. 

Theorem 4.7. Every n-embedding of a pinched polyhedral map is a closed 2-cell 
embedding. 

Proof. Let M be a Il-embeddable pinched polyhedral map, with n-embedding P. 
Removing all edges from P which are removable in M yields a n-embedding of one of 

the 70 R-minimal pinched polyhedral maps N. Since the graph of N is obtainable from 

the graph of the diminimal pinched polyhedral map D via vertex splittings, shrinking 

selected edges of N will yield a II-embedding of D, which must be one of the three 

given in Lemma 4.6, and which is therefore a closed 2-cell embedding. P can be 

recovered from the II-embedding of D by splitting selected vertices in the surface of II, 

and then splitting selected faces. Since neither of these operations can change the 

closed 2-cell status of an embedding, P itself must be closed 2-cell. 0 

We need the following theorem due to Barnette [3] and, independently, to 

Vitray [S] 

Theorem 4.8. A graph has a polyhedral II-embedding ifs G is 3-connected, 
Il-embeddable, and G-x is nonplanar for each vertex x. 
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We have the following corollary to this theorem. 

Corollary 4.9. No pinched polyhedral map has a polyhedral U-embedding. 

Theorem 4.7 and Corollary 4.9 combine to yield Theorem 4.10. 

Theorem 4.10. A n-embedding of a pinched polyhedral map must be closed 2-cell, but 

cannot be polyhedral. 

This is in strong contrast to embeddings of pinched polyhedral maps into other 

surfaces. For example, we define P,,, to be the pinched polyhedral map consisting of 

n triangular faces containing the pinch vertex on either side, and m - 2 annular bands 

of n rectangular faces composing the center strip, as shown in Fig. 8(a). The map 

P2j, 2k, j, k 2 2, can be given a polyhedral embedding on an orientable surface by the 

following process: First remove half of the faces in a ‘checkerboard’ fashion (see 

Fig. 8(b)). Then let each of the 2k- 1 nonplanar circuits homotopic to the pinch 
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vertex, and each of the 2j nonplanar circuits through the pinch vertex bound 
cells. Each edge is thus in two regions, none of which meet improperly, so that 
the graph is polyhedrally embedded in a topological space. The fact that the graph 
is embedded in a surface can be seen from the fact that the link of each vertex is a 
cycle. The fact that the surface is orientable can be seen from the fact that an 
orientation on one of the square faces, as shown in Fig. S(b), induces an orientation on 
the whole map. Finally, Euler’s formula can be employed to show that, using this 
method, Pzj, 2k is embedded on the orientable surface of genus ( j - l)(k - 1). Note that 
either Theorem 4.3 or Theorem 4.4 imply that none of Pzj,Zk, j, k>2, are projective 
planar. 

Acknowledgment 

I would like to thank the referee for a suggestion which greatly shortened my 
proof of Theorem 4.4, and for pointing out an error in my original statement of 
Lemma 4.6. 



Embeddings of polyhedral pinched maps 291 

References 

[l] D.W. Barnette and A. Riskin, On the noninterpolation of polyhedral maps, preprint. 

[Z] D.W. Barnette, Graph theorems for manifolds, Israel J. Math. 16 (1973) 62-72. 

[3] D.W. Barnette, Polyhedral embeddings in the projective plane, to appear. 

[4] G. Chartrand and L. Lesniak, Graphs and Digraphs (Wadsworth and Brooks, Monterey, 2nd edn, 

1986). 

[S] A. Riskin, Minimal maps on the pinched sphere, preprint. 
[6] A. Riskin, Embeddings of polyhedral maps in different manifolds, preprint. 

[7] C. Thomassen, Embeddings of graphs with no short noncontractible cycles, J. Combin. Theory Ser. B. 
48 (1990) 155-177. 

[S] R.P. Vitray, Representativity and flexibility of drawings of graphs on the projective plane, Ph.D. Thesis, 

Ohio State Univ., 1987. 


	Projective plane embeddings of polyhedral pinched maps
	PII: 0012-365X(94)90272-0

