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ABSTRACT

Context. The detection of quasi-periodic variability in active galactic nuclei in general, and in blazars in particular, is key to our
understanding of the origin and nature of these objects as well as their cosmological evolution. PG 1553+113 is the first blazar
showing an approximately two-year quasi-periodic pattern in its γ-ray light curve, which is also revealed at optical frequencies.
Aims. Such quasi-periodicity might have a geometrical origin, possibly related to the precessing nature of the jet, or could be intrinsic
to the source and related to pulsational accretion flow instabilities. In this work we investigate and characterise the high-resolution
radio emission properties of PG 1553+113 on parsec scales in order to differentiate between these different physical scenarios.
Methods. We monitored the source with the very long baseline array (VLBA) at 15, 24, and 43 GHz during an entire cycle of γ-ray
activity in the period 2015–2017, with a cadence of about 2 months, both in total and polarised intensity. We constrained the jet
position angle across the different observing epochs by investigating the total intensity ridge lines.
Results. We find a core-dominated source with a limb-brightened jet structure extending for ∼1.5 mas in the northeast direction whose
position angle varies in time in the range ∼40◦−60◦. No clear periodic pattern can be recognized in the VLBA light curves during
2015–2017 or in the 15 GHz Owens Valley Radio Observatory light curve during the period 2008–2018. The core region polarisation
percentage varies in the range ∼1−4%, and the polarisation angle varies from being roughly parallel to roughly transverse to the jet
axis. We estimate a rotation measure value in the core region of ∼−1.0 ± 0.4 × 104 rad m−2. The brightness temperature (TB) is found
to decrease as the frequency increases with an intrinsic value of ∼1.5 × 1010 K and the estimated Doppler factor is ∼1.4.
Conclusions. Although the jet wobbling motion indicates that geometrical effects can produce an enhanced emission through the
Doppler boosting modulation, additional mechanisms are required in order to account for the quasi-periodic variability patterns
observed in γ rays. The intrinsic TB value indicates that the total energy in the core region is dominated by the magnetic field.

Key words. galaxies: active – BL Lacertae objects: individual: PG 1553+113 – galaxies: jets – galaxies: magnetic fields

1. Introduction

Blazars are the most extreme objects in the family of active
galactic nuclei (AGNs). With their jets closely aligned to our
line of sight, they represent the best target for the study of
both the physics of particle acceleration and the role played
by magnetic fields in these extreme plasma environments
(e.g. Blandford & Königl 1979; Marscher et al. 2008). Blazars
include both flat spectrum radio quasars (FSRQs – with an
optical spectrum dominated by strong emission lines) and BL
Lac objects (BL Lacs – showing almost featureless spectra
with occasional weak optical emission lines, Stickel et al. 1991).
Blazar emission spans the entire electromagnetic spectrum from
radio up to TeV γ-ray energies, and is mostly non-thermal
in nature and linearly polarised, providing us with important
insights into the magnetic field structure (e.g. Gabuzda et al.
1994; Gómez et al. 2008; Orienti et al. 2011; Hovatta et al.
2012; Casadio et al. 2019). Blazars tend to show erratic variabil-
ity across the electromagnetic spectrum on different timescales,
ranging from years (Ulrich et al. 1997) down to a few minutes
(e.g. Aharonian et al. 2007; Albert et al. 2007a.) A small sub-

set of blazar sources exhibit possible quasi-periodic variabil-
ity across the radio, optical, and X-ray emission bands (e.g.
Villata et al. 2004; Hovatta et al. 2008; Valtonen et al. 2008;
Wiita 2011; King et al. 2013). Over the last few years, thanks to
the Fermi Large Area Telescope (Fermi-LAT) continuous mon-
itoring of the sky in the MeV-GeV energy range (Atwood et al.
2009), quasi-periodic variability has been investigated at γ-ray
energies in a number of blazars (e.g. Prokhorov & Moraghan
2017). Such high-energy periodicity might be related to jet pre-
cession and/or modulation of the accretion rate onto the cen-
tral engine(s). As such, the study of quasi-periodic variability
at γ-ray energies can help shed light on fundamental issues such
as the disc–jet connection and the nature of the jet’s magnetic
fields, and could provide further insight into gravitational wave
production in binary super massive black hole (SMBH) systems
(Abbott et al. 2016).

In this context, the BL Lac object PG 1553+113 has exhib-
ited complex high-energy variability and has been detected at
MeV/GeV γ-ray energies by the Fermi-LAT at a significance
level above 10 σ (Abdo et al. 2009). PG 1553+113 is the first
blazar for which a quasi-periodic pattern with a period of
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∼2.18 ± 0.08 yr (Ackermann et al. 2015) has been observed in
its γ-ray light curve, providing us with a unique opportunity to
investigate this peculiar behaviour.

PG 1553+113 exhibits an almost featureless optical spec-
trum (Miller & Green 1983; Falomo & Treves 1990) and the
emission at all wavelengths, from radio to very high energies
(VHE; E> 100 GeV), can be attributed to the non-thermal jet
emission, without significant contributions from other substruc-
tures (e.g. the disc, the corona, or the broad line region). The
host galaxy is yet undetected and the redshift determination
is still uncertain. Using a method based on Bayesian statistics
and the extragalactic background light absorption effects on the
VHE spectrum, Abramowski et al. (2015) obtained a value of
z = 0.49 ± 0.04. Additional indirect methods, such as the Lyα
forest method and the absence of a break in the VHE spec-
trum, constrain the redshift to the range 0.3–0.6 (e.g. Qin et al.
2018; Landoni et al. 2014; Danforth et al. 2010; Prandini et al.
2010; Mazin & Goebel 2007). This source is classified as a high
synchrotron peaked (HSP) blazar (Giommi et al. 1995) and was
detected by the HESS and MAGIC γ-ray Cherenkov telescopes
in 2005 (Aharonian et al. 2006; Albert et al. 2007b).

The quasi-periodic trend found in the γ-ray light curve of
PG 1553+113, although still debated (e.g. Covino et al. 2019), is
matched by similar behaviour at lower frequencies. In addition to
the periodicity in the γ-ray emission, hints of periodicities have
been found in the optical emission light curve spanning ∼10 yr
(2004–2014) obtained within the Tuorla optical monitoring pro-
gram1 and in the 0.3–10 keV light curve obtained by XRT on
board the Neil Gehrels Swift satellite, although at a lower signif-
icance level due to the sparse observations (Tavani et al. 2018).

To investigate the radio properties of the innermost regions
of the jet, where the γ rays are thought to be produced, high-
resolution very long baseline interferometry (VLBI) observa-
tions are needed. On VLBI scales, the source shows a compact
nuclear region with jet structure in the northeast direction (posi-
tion angle ∼50◦), that is well detected out to roughly 20 pc
from the core region (Rector et al. 2003). Beyond this distance
the jet becomes very faint and diffuse. Although several multi-
wavelength (MWL) observing campaigns of PG 1553+113 (e.g.
Raiteri et al. 2015, 2017; Hovatta et al. 2016; Itoh et al. 2016)
were conducted in recent years, only sparse VLBI observations
of PG 1553+113 can be found in the literature, including the
15 GHz observations within the MOJAVE database2 and the TeV
Blazars very long baseline array (VLBA) monitoring program
led by B. G. Piner and P. G. Edwards3. For these reasons, we
conducted a systematic multi-frequency (15, 24, and 43 GHz)
VLBA monitoring of PG 1553+113 covering a period between
two consecutive maxima in the γ-ray activity during 2015–2017.
The main purpose of this observing campaign is to investigate
and characterise the parsec-scale source properties and their evo-
lution with time as well as the possible connections with the
observed flux density modulation.

In this paper we describe the observing campaign and the
data analysis in Sect. 2, while the main results are presented in
Sect. 3. A general discussion and summary of our findings are
presented in Sects. 4 and 5, respectively. Throughout the paper
we use a ΛCDM cosmology with h = 0.71, Ωm = 0.27, and
ΩΛ = 0.73 (Komatsu et al. 2011). The spectral index α is defined
as S ν ∝ ν

−α, and all angles are measured from north to east. At a
redshift of z = 0.49 (Abramowski et al. 2015) 1 mas corresponds
to ∼5.2 pc.

1 http://users.utu.fi/kani/1m/
2 https://www.physics.purdue.edu/MOJAVE/
3 http://whittierblazars.com/

Table 1. Details about the different VLBA observing sessions.

Exp. code Obs. date MJD Refant Missing/flagged stations
yyyy/mm/dd (Obs. band in brackets)

BL214 2015/02/02 57055 PT HK, NL (K, Q)
− 2015/02/25 57078 PT SC (Q)
BL215 2015/09/11 57276 PT SC (Q)
− 2015/10/17 57312 OV −

− 2016/01/03 57390 OV PT, BR, MK (K, Q), HK (Q)
− 2016/02/20 57438 PT HK (Q), MK (K)
− 2016/04/05 57483 PT −

− 2016/05/17 57525 PT SC (Q)
− 2016/06/19 57558 OV SC (Q)
− 2016/09/19 57650 OV SC (Q), HK ()Q
− 2016/10/11 57672 OV BR, MK, HK (Q)
− 2017/01/02 57755 OV MK, FD (Q)
− 2017/03/23 57835 OV MK (Q)
− 2017/06/12 57916 OV SC (Q)

Notes. Station codes: BR – Brewster, FD – Fort Davis, HK – Hancock,
KP – Kitt Peak, LA – Los Alamos, MK – Mauna Kea, NL – North
Liberty, OV – Owens Valley, PT – Pie Town, SC – St. Croix.

2. Observations and data analysis

We monitored PG 1553+113 with the VLBA at 15, 24, and
43 GHz in full polarisation from February 2015 to June 2017.
The observations are based on two related observing projects:
two six-hour observing sessions during the period of its maxi-
mum γ-ray activity in 2015 (BL214) and a full two-year mon-
itoring program with roughly bimonthly runs (BL215, 54-h in
total). Table 1 reports the log of the observations. In some
epochs one or more VLBA stations were missing or flagged
due to technical problems (as reported in the last column in
Table 1); when a station is missing only for a specific observ-
ing band, it is indicated in brackets. We were able to obtain
absolute electric vector position angle (EVPA) orientations for
the four observing epochs (MJD 57055, 57078, 57650, 57755)
for which we had quasi-simultaneous Karl G. Jansky very large
array (JVLA) observations at similar frequencies. We used the
source J1310+3220 as the instrumental polarisation calibrator.
We also made use of the 15 GHz observations provided by the
Owens Valley Radio Observatory (OVRO) blazar monitoring
program (Richards et al. 2011). PG 1553+113 has been moni-
tored with OVRO since 2008 with a cadence of about two obser-
vations per week. In this work we use the observations over the
MJD range 54696-581534.

We used the software package Astronomical Image Pro-
cessing System (AIPS; Greisen 2003) for the data calibration,
the fringe-fitting, and the detection of cross-polarised fringes.
We determined the instrumental polarisation leakages (D-terms)
with the AIPS task LPCAL. For the final images we used the
CLEAN and self-calibration procedures in the DIFMAP software
package (Shepherd 1997). The core flux densities were obtained
by fitting elliptical Gaussian components to the calibrated vis-
ibilities for each epoch at each frequency in DIFMAP. In this
work the core is identified as a bright and stationary feature at
the upper end of the jet, with a roughly flat spectrum and high
brightness temperature (of the order of 1010 K, see Sect. 3.5).

For producing the polarisation images presented in this work
we made use of IDL routines developed by J. L. Gómez and for
the ridge-line analysis the HEADACHE5 python package devel-
oped by J. Liu was used.

4 http://www.astro.caltech.edu/ovroblazars/
5 https://github.com/junliu/headache
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Fig. 1. Natural weighted 15 GHz (left
panel), 24 GHz (middle panel), and
43 GHz (right panel) VLBA images of
PG 1553+113 from the first observing
epoch (top image in each panel) to the
fourteenth epoch (bottom image in each
panel). The vertical separation between
images is not proportional to the time differ-
ence between epochs. The images at each
frequency have been convolved with a com-
mon beam with FWHM 0.6 mas × 1.2 mas,
0.4 mas × 0.8 mas and 0.3 mas × 0.7 mas at
15, 24 and 43 GHz, respectively, as shown
in the bottom-left corner in each panel. The
overlaid lowest total intensity contour is at
0.4%, 1.3%, and 1.8% of the peak at 15,
24, and 43 GHz (see Table 2), respectively,
with the following contours a factor of
two higher. The colour scale represents the
linearly polarised intensity.

3. Results

3.1. Images

In Fig. 1 we show the natural weighted images for PG 1553+113
obtained during our 2015–2017 VLBA observing campaign at

15 GHz (left panel), 24 GHz (middle panel), and 43 GHz (right
panel). The source shows a compact core region with a northeast
jet structure detected up to ∼1.5 mas (∼7.8 pc in linear size) at
15 GHz and ∼1 mas (∼5.2 pc) at 43 GHz. This morphology is in
agreement with 15 GHz MOJAVE images, as well as with the 22
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Table 2. Summary of the total and polarised intensity parameters shown in Fig. 4 and in the lower frame of Fig. 6.

Frequency Obs. date MJD S peak
(a) σS peak

(b) S core
(c) σS core

(d) S total
(e) σS total

( f ) P (g) σP
(h) m (i) σm

( j) χ (k) σχ
(l) a (m) b/a

yy/mm/dd (mJy) (mJy) (mJy) (mJy) (mJy) (mJy) (mJy) (mJy) (%) (%) (deg) (deg) (mas)

15 GHz 2015/02/02 57055 165.7 16.6 182.8 18.3 187.1 18.7 1.3 0.2 0.7 0.1 52.8 6.5 0.3 0.8
2015/02/25 57078 140.0 14.0 152.8 15.3 159.9 16.0 1.9 0.2 1.3 0.2 22.6 5.1 0.2 0.9
2015/09/11 57276 168.2 16.8 179.5 17.9 187.7 18.8 5.6 0.7 3.1 0.5 − − 0.2 0.8
2015/10/17 57312 182.8 18.3 195.5 19.6 203.2 20.3 2.2 0.3 1.1 0.2 − − 0.2 0.9
2016/01/03 57390 136.9 13.7 157.9 15.8 165.4 16.5 2.9 0.4 1.8 0.3 − − 0.3 0.7
2016/02/20 57438 121.9 12.2 141.5 14.1 149.2 14.9 2.4 0.3 1.7 0.2 − − 0.3 0.8
2016/04/05 57483 119.0 11.9 136.5 13.7 142.8 14.3 3.0 0.4 2.2 0.4 − − 0.3 0.7
2016/05/17 57525 111.9 11.2 127.8 12.8 136.7 13.7 3.5 0.5 2.7 0.5 − − 0.3 0.7
2016/06/19 57558 103.6 10.4 119.6 12.0 125.6 12.6 2.3 0.3 1.9 0.3 − − 0.4 0.7
2016/09/19 57650 120.5 12.1 134.1 13.4 138.5 13.9 2.5 0.3 1.9 0.3 154.9 5.6 0.3 0.9
2016/10/11 57672 140.6 14.1 153.2 15.3 157.4 15.7 1.5 0.2 1.0 0.2 − − 0.3 0.8
2017/01/02 57755 123.9 12.4 136.4 13.6 140.4 14.0 2.0 0.2 1.5 0.2 69.1 6.6 0.4 0.6
2017/03/23 57835 161.4 16.1 176.2 17.6 183.1 18.3 1.8 0.3 1.0 0.2 − − 0.3 0.8
2017/06/12 57916 174.6 17.5 192.5 19.3 201.2 20.1 4.0 0.4 2.1 0.3 − − 0.3 0.7

24 GHz 2015/02/02 57055 133.8 13.4 154.1 15.4 160.4 16.0 2.0 0.3 1.3 0.2 49.5 6.9 0.2 0.6
2015/02/25 57078 137.3 13.7 157.2 15.7 164.7 16.5 0.9 0.1 0.6 0.1 128.0 6.4 0.2 0.7
2015/09/11 57276 142.5 14.3 157.7 15.8 164.5 16.5 5.5 0.6 3.5 0.5 − − 0.2 0.7
2015/10/17 57312 154.8 15.5 172.2 17.2 183.6 18.4 3.4 0.4 2.0 0.3 − − 0.2 0.7
2016/01/03 57390 117.8 11.8 144.3 14.4 152.0 15.2 2.8 0.4 1.9 0.3 − − 0.3 0.7
2016/02/20 57438 104.7 10.5 126.9 12.7 133.3 13.3 2.7 0.3 2.2 0.3 − − 0.3 0.7
2016/04/05 57483 94.4 9.4 115.1 11.5 122.3 12.2 3.0 0.3 2.6 0.4 − − 0.3 0.6
2016/05/17 57525 88.8 8.9 104.3 10.4 113.2 11.3 2.8 0.3 2.7 0.4 − − 0.2 0.5
2016/06/19 57558 85.9 8.6 100.1 10.0 102.3 10.2 2.4 0.3 2.4 0.4 − − 0.2 0.8
2016/09/19 57650 91.4 9.1 108.8 10.9 110.4 11.0 2.5 0.3 2.3 0.4 147.5 8.5 0.3 0.7
2016/10/11 57672 104.9 10.5 125.7 12.6 129.4 12.9 3.1 0.5 2.5 0.4 − − 0.3 0.7
2017/01/02 57755 104.8 10.5 124.2 12.4 126.9 12.7 1.0 0.2 0.8 0.2 46.2 7.2 0.3 0.7
2017/03/23 57835 144.1 14.4 165.1 16.5 177.0 17.7 2.2 0.3 1.3 0.2 − − 0.2 0.7
2017/06/12 57916 144.7 14.5 173.1 17.3 179.3 17.9 3.3 0.4 1.9 0.3 − − 0.3 0.7

43 GHz 2015/02/02 57055 112.1 11.2 147.1 14.7 149.2 14.9 1.9 0.2 1.3 0.2 129.5 6.0 0.2 0.6
2015/02/25 57078 96.8 9.7 111.1 11.1 113.7 11.4 3.0 0.3 2.7 0.4 3.7 6.1 0.2 0.6
2015/09/11 57276 114.9 11.5 133.9 13.4 144.3 14.4 4.8 0.6 3.6 0.6 − − 0.2 0.6
2015/10/17 57312 109.6 11.0 131.8 13.2 137.7 13.8 3.0 0.4 2.2 0.4 − − 0.1 0.8
2016/01/03 57390 105.1 10.5 134.1 13.4 135.9 13.6 2.6 0.4 2.0 0.3 − − 0.2 0.8
2016/02/20 57438 86.4 8.6 106.6 10.7 115.5 11.5 2.1 0.3 2.0 0.3 − − 0.2 0.7
2016/04/05 57483 75.5 7.5 94.6 9.5 103.8 10.4 1.6 0.2 1.7 0.3 − − 0.2 0.5
2016/05/17 57525 65.1 6.5 76.3 7.6 82.1 8.2 1.9 0.3 2.5 0.4 − − 0.2 0.5
2016/06/19 57558 63.8 6.4 72.5 7.3 76.2 7.6 1.2 0.3 1.6 0.4 − − 0.2 0.9
2016/09/19 57650 64.9 6.5 75.4 7.6 81.3 8.1 2.8 0.4 3.7 0.6 168.8 6.7 0.3 0.6
2016/10/11 57672 86.0 8.6 98.6 9.9 100.9 10.1 1.1 0.2 1.1 0.3 − − 0.3 0.4
2017/01/02 57755 69.1 6.9 91.0 9.1 98.8 9.9 2.8 0.5 3.1 0.6 99.2 7.1 0.3 0.5
2017/03/23 57835 106.0 10.6 131.3 13.1 137.0 13.7 2.2 0.3 1.7 0.3 − − 0.2 0.7
2017/06/12 57916 134.3 13.4 173.5 17.4 188.2 18.8 3.2 0.4 1.9 0.3 − − 0.2 0.8

Notes. (a)Peak flux density (S peak) in mJy; (b)uncertainties on S peak; (c)core region flux density (S core) in mJy; (d)uncertainties on S core; (e)total
flux density (S total) in mJy; ( f )uncertainties on S total; (g)polarised flux density (P) in mJy; (h)uncertainties on P; (i)fractional polarisation (m);
( j)uncertainties on m; (k)EVPAs (deg); (l)uncertainties on the EVPAs; (m)a and b are the FWHM of the major and minor axes of the modelfit
Gaussian components (mas).

and 43 GHz results by Piner & Edwards (2018). The jet position
angle (PA) has an average value of ∼50◦. Further details and
constrains about the PA across the different observing epochs
are provided in Sect. 3.3. Colours represent the linear polarised
emission, which is mainly detected in the core region, while the
black contours represent the total intensity emission.

3.2. Light curves

In Fig. 4 we show the core region total (upper image) and
polarised (lower image) intensity light curves. In each image
results at 15, 24, and 43 GHz are reported in single frames from
top to the bottom, respectively.

We monitored PG 1553+113 between February 2015 to June
2017 with a cadence of about 2 months, and with an approxi-
mately six-month gap between the second and third observing
runs. Flux densities are reported in Table 2. We find two maxima
in the total intensity emission (upper image in Fig. 4) around
MJD 57312 (Oct 2015) and MJD 57916 (June 2017), that is, at
the beginning and the end of the observing period, and a mini-
mum around 57558 (Jun 2016). The total intensity light curves
are found to vary in the range 120–200 mJy at 15 GHz, 100–
170 mJy at 24 GHz, and 70–170 mJy at 43 GHz. The variability
is higher at 43 GHz, where the fractional variability amplitude
(Fvar, Vaughan et al. 2003) is 0.26±0.03, while at 24 and 15 GHz
Fvar is 0.16 ± 0.03 and 0.13 ± 0.03, respectively. Red triangles
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in the first frame in the top image of Fig. 4 represent the 15 GHz
OVRO light curve.

As shown in the lower image in Fig. 4 we detect polarised
emission from the source core region with an average value of
2.6, 2.7, and 2.5 mJy at 15, 24, and 43 GHz, respectively. The
polarised emission is also found to be variable, with Fvar '

0.40±0.05 at all three observing frequencies. During MJD 57276
a peak in the polarised emission of 5.6 ± 0.7, 5.5 ± 0.6, and
4.8±0.6 mJy is detected at 15, 24, and 43 GHz, respectively. The
fractional polarisation varies in the range 0.7−3.1% at 15 GHz,
0.6−3.5% at 24 GHz, and 1.1−3.7% at 43 GHz. The average
fractional polarisation is 1.7%, 2.0%, and 2.2% at 15, 24, and
43 GHz, respectively.

To asses the significance of the variability observed both in
the total and polarised intensity light curves, we performed a χ2

analysis by testing the null hypothesis of non-variability (with
the flux density being constant around the average value). In all
cases the null hypothesis can be rejected with a confidence level
above 3σ.

3.3. Jet total intensity ridge line

It is apparent upon visual inspection of the source images
(Fig. 1) that the jet direction varies across epochs. Given that the
extended emission of the source on VLBI scales is not promi-
nent and well-defined, it is not straightforward to represent the
jet brightness distribution by means of Gaussian model-fit com-
ponents. In order to constrain the jet direction and to further
quantify its variation with time, we calculate the total intensity
ridge line in each epoch at 15 GHz after convolving the images
with a circular beam with a 0.6 mas radius. We use the method
proposed by Pushkarev et al. (2017) by taking azimuthal slices
along the jet in a polar coordinate system centred on the core.
We look for the half-point that divides the intensity integrated
along the arc into two equal sections. The slices along the jet
direction are taken in the image plane in steps of 0.03 mas and
only pixels with a signal-to-noise ratio of S/N > 10 are taken
into account. This approach is particularly suitable in the case
of a jet showing a limb-brightened structure in total intensity,
that is a distinctive feature of HSP blazars (e.g. Giroletti et al.
2008; Piner et al. 2010; Lico et al. 2014). As an example, in the
left panel of Fig. 2 we present the 15 GHz total intensity image
obtained during MJD 57276, convolved with a 0.6 mas × 0.6 mas
circular beam, with the ridge line (yellow line) overlaid. The
limb brightened structure is clearly visible. The same image is
shown in polar coordinates in the right panel of Fig. 2, where
the total intensity limb-brightened structure is also clearly visi-
ble (blue colour).

In the upper panel of Fig. 3 we present the ridge lines
obtained for all of the 14 observing epochs in a single plot with
different colours, where the jet wandering can clearly be seen.
Overall, the ridge line extends from 0.9 to ∼1 mas from the core
region. The jet direction in each epoch is determined by averag-
ing all the angles of each ridge-line point between 0.6 mas from
the core region (i.e. beyond the beam radius) and the outermost
ridge-line point (.1 mas). All angles thus obtained are shown
in the lower panel of Fig. 3 and reported in Table 3. In princi-
ple we could also extract information about the ridge-line cur-
vature. However, given that the jet of PG 1553+113 between 15
and 43 GHz is not particularly extended and is not well defined
(core-dominated source), any estimates regarding the curvature
would be largely uncertain.

To estimate the angle of the funnel in which the jet wob-
bles, we first align the 15 GHz images (convolved with a com-

Fig. 2. Evolution with time of the total intensity (upper image) and
polarised flux density (lower image) in the core region of PG 1553+113
during the MJD 57055–57916 period. In each image we report the 15
GHz (upper frame), 24 GHz (middle frame), and 43 GHz (lower frame)
results. The overlaid red triangles in the upper image (top panel) rep-
resent the 15 GHz OVRO light curve in the MJD range 56974–57990.

mon beam with FWHM 0.6 mas × 1.2 mas) according to the
position of the fitted core component, and after subtracting the
core component emission we stack all of the residual images.
Only those pixels with a S/N > 8 are taken into account. In the
residual stacked image (Fig. 5), the jet-emitting region extends
up to ∼1 mas (∼5.2 pc) in a funnel with an angle of φ ∼
100 deg. A total intensity limb-brightened structure is clearly
visible, with the southeast limb being brighter (peak flux den-
sity ∼3.7 mJy beam−1) than the northern one (peak flux density
∼2.5 mJy beam−1).

3.4. Intrinsic polarisation angle and rotation measure

Due to the lack of polarisation calibrators on VLBI scales, in
order to obtain the absolute orientation of the EVPAs, a compar-
ison with quasi-simultaneous single-dish or JVLA observations
is required. The final EVPA values for the four epochs for which
close in time JVLA observations were available (see Sect. 2) are
shown in the bottom panel of Fig. 6 for 15 (black circles), 24
(red triangles), and 43 (blue stars) GHz. The EVPAs are found
to be variable across the different observing epochs, and change
from being roughly aligned (∼50◦) to approximately transverse
(∼150◦) to the jet axis.
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Fig. 3. Left image: 15 GHz total intensity (contours and colour scale) image of PG 1553+113 during the third observing epoch (MJD 57276),
convolved with a 0:6 mas 0:6 mas circular beam. The overlaid lowest total intensity contour is at 0.6% of the peak, with the following contours a
factor of two higher. The ridge line is overlaid as a yellow line. Right image: same 15 GHz image in polar coordinates. The colour scale represents
the total intensity emission and the white line represents the ridge line.

Table 3. Jet PA values with standard errors (σPA), as reported in the
bottom panel in Fig. 3, and core region spectral indexes between 15 and
43 GHz (S I15−43) with the uncertainties σS I15−43 .

Obs. date MJD PA σPA SI15−43 σSI15−43

(deg.) (deg.)

2015/02/02 57055 56.2 1.1 0.21 0.13
2015/02/25 57078 59.1 1.0 0.30 0.13
2015/09/11 57276 54.4 0.5 0.28 0.13
2015/10/17 57312 51.7 1.0 0.37 0.13
2016/01/03 57390 45.1 0.7 0.16 0.13
2016/02/20 57438 49.0 1.3 0.27 0.13
2016/04/05 57483 53.7 1.0 0.35 0.13
2016/05/17 57525 49.9 0.5 0.49 0.13
2016/06/19 57558 39.4 1.2 0.47 0.13
2016/09/19 57650 48.8 1.7 0.55 0.14
2016/10/11 57672 49.8 1.6 0.42 0.13
2017/01/02 57755 54.2 1.1 0.38 0.14
2017/03/23 57835 49.5 1.2 0.28 0.13
2017/06/12 57916 44.8 1.4 0.10 0.13

Because of the effect of Faraday rotation, which occurs when
a polarised wave propagates through a magnetised plasma, the
observed polarisation angle (χobs), at a given observing wave-
length λ is rotated with respect to the intrinsic angle (χint).
Taking this effect into account is essential for obtaining the
intrinsic polarisation angle as well as the intrinsic magnetic field
orientation. For a Faraday rotating medium external to the emit-
ting region χobs = χint + RM × λ2, with RM being the rotation
measure defined as:

RM = 812
∫

ne B‖ · dl [rad m−2], (1)

where ne is the electron density (cm−3), B‖ is the component of
the magnetic field parallel to our line of sight (mG), and dl the
path length (pc). It is evident, within this theoretical framework,
that a linear dependence exists between χobs and λ2. We therefore

compute linear fits to our observed EVPAs at 15, 24, and 43 GHz
to obtain estimates of χint and RM.

The values of RM and χint obtained for these four observing
epochs are presented in Table 4 and in Fig. 6 (top and middle
panels, respectively). The average RM value is ∼−1.0 ± 0.4 ×
104 rad m−2, varying between −1.3 and −0.8 × 104 rad m−2. The
intrinsic polarisation angle is also variable across the different
observing epochs, varying between 135◦ ±7◦ (i.e. roughly trans-
verse to the jet axis) and 210◦ ±7◦ (i.e. roughly parallel to the jet
axis).

3.5. Brightness temperature measurements

By fitting the core brightness distribution in the uv-plane with
an elliptical Gaussian component, via the modelfit procedure in
DIFMAP, we can determine the observed rest-frame core bright-
ness temperature T obs

B,vlbi (e.g. Tingay et al. 1998):

T obs
B,vlbi = 1.22 × 1012 S core(1 + z)

θmajθminν2 [K], (2)

where S core corresponds to the fitted core flux density (Jy) for a
given observing frequency ν (GHz), θmaj and θmin are the FWHM
(mas) of the major and minor axes of the elliptical Gaussian
core component, and z is the redshift. The resulting T obs

B,vlbi val-
ues are reported in Table 5, where T obs

B,vlbi(max), T obs
B,vlbi(min), and

T obs
B,vlbi(avg) represent the maximum, the minimum, and aver-

age values at each frequency across the different observing
epochs.

We also estimate the rest-frame core variability brightness
temperature T obs

B,var using a variability timescale of τ ∼ 300 days,
which is the average time range between the maximum and
minimum values observed in the core total intensity light curve:

T obs
B,var = 1.548 × 10−32 ∆S maxd2

L

ν2τ2(1 + z)4 [K], (3)

with ∆S max being the difference between the maximum and the
minimum core flux density values and dL (m) the luminosity
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Fig. 4. Upper image: ridge lines of PG 1553+113 for all 14 observing
epochs at 15 GHz. Each epoch is represented by a different colour and is
labelled with a progressive number. The two dashed arcs represent 0.6
mas and 1 mas from the core region. Lower image: jet direction across
the observing epochs represented by the average ridge-line angle (see
Sect. 3.3 for more details).

distance (e.g. Liodakis et al. 2017). The T obs
B,var values at the three

observing frequencies are reported in Table 5 (fourth line).
Since blazar jets are closely aligned to our line of sight, the

effects of Doppler boosting must be taken into account when
investigating the intrinsic source properties (Urry & Padovani
1995). T obs

B,vlbi and T obs
B,var are related to the intrinsic brightness

temperature T int
B via the following equations:

T obs
B,vlbi = T int

B × δ, (4)

T obs
B,var = T int

B × δ3, (5)

where δ = [γ(1 − β cos θ)]−1 is the Doppler factor (with θ being
the viewing angle between the jet and our line of sight, β the jet
speed in units of the speed of light, and γ = (1− β2)−1/2 the bulk
Lorentz factor).

4. Discussion

In recent years, several multi-frequency observing campaigns
have been devoted to the study of the quasi-periodic variations
(on timescales of ∼2 yr) detected in the γ-ray light curves of

Table 4. Rotation measure and intrinsic polarisation angle values for
the core region obtained from the linear fits of EVPAs vs. λ2.

Epoch MJD RM (a) σRM
(b) χ (c) σχ

(d)

mm/dd/yyyy (rad m−2) (rad m−2) (deg) (deg)

02/02/2015 57055 −12 780 435 165 6
02/25/2015 57078 −7940 380 200 6
09/19/2016 57650 −10 120 430 210 7
01/02/2017 57755 −10 630 470 135 7

Notes. (a)Rotation measure in rad m−2; (b)rotation measure uncertainty;
(c)intrinsic polarisation angle in degrees; (d)intrinsic polarisation angle
uncertainty.

the PG 1553+113 (Ackermann et al. 2015). While optical peri-
odic variations on different timescales have been extensively
investigated in blazars (e.g. Valtonen et al. 2006; Li et al. 2009;
Britzen et al. 2018), at γ-ray energies this has been possible only
with the advent of the Fermi-LAT in 2008 thanks to the con-
tinuous and systematic sky monitoring in the MeV-GeV energy
range. A similar approximately two-year quasi-periodicity (with
significance above >3σ) has also been claimed in a few other
blazars such as PKS 0537-441 (Sandrinelli et al. 2016), BL
Lacertae (Sandrinelli et al. 2017), PKS 2155-304 (Zhang et al.
2017a), PKS 0301-243 (Zhang et al. 2017b), and J1043+2408
(Bhatta 2018).

However, while some dedicated studies confirm the approxi-
mately two-year periodicity in the γ-ray light curve of PG 1553+
113 (e.g. Ackermann et al. 2015; Prokhorov & Moraghan 2017;
Ait Benkhali et al. 2020; Yan et al. 2018), there are other stud-
ies which demonstrate that there is no solid evidence supporting
such hints of year-long periodicities in blazars (e.g. Covino et al.
2019). We emphasise that caution is required when claiming
quasi-periodicities on timescales of a few years in blazar γ-
ray emission. This is because of the limited γ-ray light-curve
duration (based on ∼10 yr of LAT operational activity), and the
red-noise contamination that can easily mimic such short-period
variability patterns (e.g. Covino et al. 2019).

One approach to further substantiate the existence of γ-ray
periodicity is the use of comparisons to other wavelengths. In
the case of PG 1553+113, the optical light curve shows a vari-
ability trend in good agreement with the γ rays, confirming
the approximately two-year periodic pattern. Moreover, hints of
possible periodic behaviour are also found at X-rays, although
this is not statistically significant due to the very sparse tempo-
ral sampling (Ackermann et al. 2015; Tavani et al. 2018). In this
work we extend the investigation to the radio emission from the
innermost jet region by means of a dedicated multi-frequency
VLBA observing campaign. It is apparent from the 15, 24, and
43 GHz VLBA light curves shown in Fig. 4 that two periods
of enhanced radio emission occur around October 2015 (MJD
57312) and June 2017 (MJD 57916), with a minimum appear-
ing around June 2016 (MJD 57558). We note that the spec-
tral index flattens during the periods of enhanced activity, with
α15−43 ∼ 0.2±0.1, while it is steeper during the low-activity state,
with α15−43 ∼ 0.5±0.1 (see Table 3). No clear repeating patterns
are discernible in the light curve during the period 2015–2017.
Furthermore, the detection of multiple cycles on a longer observ-
ing period would be necessary to claim quasi-periodicity in the
parsec-scale radio emission.

We note that the 15 GHz VLBA flux density trend over the
entire observing period is in good agreement with the light curve
obtained from the OVRO monitoring (red triangles overlaid in
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Fig. 5. 15 GHz residual stacked image after core subtraction (see
Sect. 3.3). The colour scale represents the total intensity emis-
sion. The lowest contour is three times the image noise (that is
∼0.34 mJy beam−1), with the following contours being a factor of two
higher. The φ symbol represents the angle of the funnel in which the jet
wobbles across time.

the top panel of Fig. 4). Indeed, we find Fvar ∼ 0.13 ± 0.03 for
both light curves and the Pearson correlation coefficient between
our 15 GHz VLBA and the closest OVRO observations (in time)
is r = 0.90, implying a correlation above a 3σ level. These find-
ings allow us to argue that: (1) the overall variability in the radio
emission is driven by changes occurring within the VLBI core
region, and (2) that the OVRO light curve is representative of
the core region flux density modulation. Based on these assump-
tions, it would appear that despite the presence of rapid variabil-
ity in the OVRO light curve since 2008 (lower frame in Fig. 7)
there is no clear and well-defined periodicity in the radio emis-
sion (in contrast to the well-defined periodicity in the γ-ray emis-
sion).

This is confirmed by applying the weighted wavelet
z-transform (WWZ) method (Foster 1996), which is widely used
for testing and quantifying quasi-periodic oscillations in blazar
light curves (e.g. Hovatta et al. 2008; Ackermann et al. 2015;
Bhatta 2017; Tavani et al. 2018; Ait Benkhali et al. 2020). We
adopt a WWZ period search window in the frequency range
5.5−20.0 × 10−4 day−1, with a frequency step of 3 × 10−5 day−1,
resulting in approximately 50 test frequencies. We choose the
minimum frequency in such a way that at least two complete
cycles could be detected throuth the full observing time range
that covers ∼10 yr, while the maximum frequency corresponds
to a timescale of 500 days (i.e. about 80 times the mean time
separation). The wavelet window width is defined by using a
decay constant c = 0.0125. In Fig. 7 we show the OVRO light
curve WWZ power (colour scale in the top-right corner) as
a function of time (x-axis) and period (y-axis) over the MJD
range 54696-58153. From this analysis, no variability pattern
is seen in the OVRO light curve over the entire time range, in
contrast to that seen in the γ-ray light curve (Ackermann et al.
2015; Tavani et al. 2018). A possible quasi-periodic modulation

is found over a limited MJD range (57300-58153) with a period
of ∼930 days (∼2.5 yr).

We assess the statistical significance of the WWZ vari-
ability timescale by means of Monte Carlo simulations, fol-
lowing the approach proposed by (and references therein
Emmanoulopoulos et al. 2013), which takes into account the
so-called ‘red noise leakage’ and aliasing effects due to the
sampling properties of the real data sets (i.e. finite length and
finite time resolution). We first generate 2000 light curves with
the same power spectrum density (PSD) and power density
function (PDF) as the actual observations. We then calculate
the WWZ periodograms for the simulated light curves using
the same parameters as for the OVRO 15 GHz observations.
The averaged WWZ is then compared with the one obtained
from the observed light curve. The significance intervals are
over-plotted as white contours in Fig. 7, in which the dotted,
dashed, and solid lines represent 1σ, 2σ, and 3σ, respectively.

These results confirm the lack of a clear periodic variability
or pattern that is stable over time at radio frequencies.

4.1. A wobbling jet

In general, quasi-periodic MWL emission modulation in blazars
has one of two possible origins: (i) The first is a geometrical ori-
gin with periodic variations in the Doppler beaming factor pro-
duced by periodic changes of the angle between the jet axis and
our line of sight. These changes in orientation may be related
to the jet precessing or rotational motion, and/or helical struc-
ture within relativistic jets (e.g. Camenzind & Krockenberger
1992; Abraham 2000; Stirling et al. 2003; Nakamura & Meier
2004; Rieger 2004; Raiteri et al. 2015). (ii) The second is
an intrinsic origin, with quasi-periodic plasma injection into
the relativistic jet that is due to quasi-periodic instabilities in the
accretion flow, producing the observed variability patterns in the
emitted radiation (e.g. Honma et al. 1992; Tchekhovskoy et al.
2011; Pihajoki et al. 2013). In the case of a geometrical effect,
the quasi-periodic variability is only observed in the frame
of the observer, while in the case of pulsational instabilities
in the accretion flow, such quasi-periodic emission variations
are also present in the jet comoving frame. In both scenar-
ios the presence of a binary SMBH system is often invoked
(e.g. Cavaliere et al. 2017; Sobacchi et al. 2017; Tavani et al.
2018; Caproni et al. 2017; Britzen et al. 2018). As suggested by
Begelman et al. (1980), binary SMBHs may produce wiggles,
helical motion, and periodic variability in the jets of AGNs as a
kinematical consequence of their orbital motion and of jet pre-
cession.

In order to test the jet precession scenario in PG 1553+113,
we constrain the jet position angle across epochs by means of the
total intensity ridge line, as described in Sect. 3.3. The jet posi-
tion angle, as shown in Fig. 3, is found to be variable across the
different epochs with a range of values between ∼40◦ and ∼60◦.
We assessed the significance of the PA variability by means of a
χ2 analysis, and the null hypothesis of a constant PA equal to the
average value of 50◦ could be rejected with a confidence level
above 3σ. A direct signature of the PA variation across epochs
is the large angle (∼100◦) of the funnel in which the jets wan-
der. This was determined via stacking the images of the 15 GHz
residuals for all the observing epochs (Fig. 5). The wobbling jet
motion indicates that geometrical effects can play a role in the
observed emission variability through Doppler boosting modu-
lation. However, we do not find any clear connection between
the jet position angle variation and the total intensity emission or
with the approximately two-year γ-ray quasi-periodic variability
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Table 5. Core region brightness temperature values in units of 1010 K.
For more details see Sect. 3.5.

15 GHz 24 GHz 43 GHz
(1010 K) (1010 K) (1010 K)

T obs
B,vlbi(max) 3.4 2.0 0.7

T obs
B,vlbi(min) 1.0 0.5 0.1

T obs
B,vlbi(avg) 1.9 1.1 0.4

T obs
B,var 8.5 3.2 1.4

Fig. 6. Core region RM (upper panel), intrinsic polarisation angle (mid-
dle panel), and absolute EVPA orientation (lower panel) values during
the epochs MJD 57055, 57078, 57650, and 57755. In the lower panel
15, 24, and 43 GHz are represented by black circles, red triangles, and
blue star symbols, respectively.

pattern. For this reason, under the assumption that γ rays and
radio emission are produced in the same region, we argue that
the Doppler boosting modulation alone cannot account for the
observed recurrent oscillations in the γ-ray light curve. Addi-
tional physical mechanisms are required. Within the framework
of a binary SMBH system, one plausible scenario is that the
secondary black hole crosses and perturbs the accretion disc of
the primary black hole, inducing a temporary enhancement of
the accretion rate, which in turn leads to increased jet emission
(Sillanpaa et al. 1988; Valtaoja et al. 2000; Caproni et al. 2017;
Britzen et al. 2018). Another mechanism that could be responsi-
ble for the jet wobbling is the possible shuttle of the core closer
to the jet apex, as reported in several studies (e.g. Kovalev et al.
2008; Niinuma et al. 2015). This core-shuttle effect can result
from either changes in the physical conditions at the jet base or
the ejection of a new component blended within the unresolved
core region (e.g. Hodgson et al. 2017; Lisakov et al. 2017).

One possible explanation for the presence of quasi-
periodicity in γ rays but not in radio could come from distinct
emission regions between the two frequencies. Within this con-
text, an additional scenario for producing enhanced γ-ray emis-
sion is described by Bosch-Ramon et al. (2012) by means of the
possible dynamical interaction of a relativistic jet with matter
clumps or the atmosphere of an evolved star in the near vicin-
ity of a SMBH. As the authors of this work point out, in gen-
eral a considerably amount of dust, stars, and gas tend to cluster
in the central region of galaxies and the relativistic jets in AGNs
are expected to frequently interact with such ambient material.
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Fig. 7. Upper frame: two-dimensional WWZ power (colour scale on the
right side) distribution as a function of time (x-axis) and period (y-axis)
of the 15 GHz OVRO light curve over the MJD range 54696-58153. The
significance intervals are plotted as white contours, in which the dotted,
dashed, and solid lines represent 1σ, 2σ, and 3σ, respectively. Lower
frame: OVRO light curve over the MJD range 54696-58153.

4.2. Polarisation properties

The polarised emission from the core region (lower image in
Fig. 4) is on average more variable (Fvar ∼ 0.40 ± 0.05) than
the total intensity emission (Fvar ∼ 0.20 ± 0.03), and no vari-
ability patterns can be easily recognised during this 2015–2017
VLBA observing campaign. The most notable features in the
polarised emission light curves are represented by a ∼5.0 ±
0.6 mJy peak reached at all of the observing frequencies dur-
ing the third observing epoch (MJD 57276), and a second one
of ∼3.5 ± 0.4 mJy during the fourteenth observing epoch (MJD
57916). Both peaks in the polarised emission are detected dur-
ing the two periods in which the source is undergoing enhanced
activity in the total intensity emission. This behaviour may indi-
cate that the processes producing the increased total intensity
emission activity are also responsible for the enhanced polarised
emission.

The Faraday corrected EVPAs at 15, 24, and 43 GHz, as well
as the intrinsic polarisation angle, obtained from the EVPAs ver-
sus λ2 linear fits during MJD 57055, 57078, 57650, and 57755
have been found to vary between being roughly parallel to the
jet axis to being roughly transverse, with no clear connection
with the total intensity emission modulation. This indicates that
the magnetic field configuration is also variable with time. Such
behaviour, together with the low degree of polarisation in the
core region (on average ∼2.5 mJy), could be explained by the
presence of multiple polarised subcomponents blended within
the beam. The net observed polarisation properties integrated
over the VLBI core region result from the sum of the relative
contributions of each subcomponent, whose properties vary with
time.

The linear dependence found between the observed EVPAs
with λ2 indicate that the Faraday screen is mostly external to
the emitting region (e.g. Burn 1966). The RM has been found to
vary with time in a range between −1.3 and −0.8 × 104 rad m−2.
Given that the jet position angle wobbles across the different
observing epochs, we can argue that the RM variations are pro-
duced by variations of the path length (dl) through the exter-
nal Faraday screen and/or variations in the electron density
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distribution ne (Stirling et al. 2003). The persistent negative sign
in the observed RM across the different epochs, within the sce-
nario in which the Faraday screen is mostly represented by
the hot accretion flow or wind outflow, could be explained by
a misalignment of the jet axis with respect to the wind axis
(Park et al. 2019). If compared to Mrk 421 (e.g. Lico et al. 2014)
and Mrk 501 (e.g. Hovatta et al. 2012), the RM value found for
PG 1553+113 is the highest measured in a blazar of HSP type
to date. However, sample sizes are still not large enough for a
statistically significant characterisation of the average RM prop-
erties of the HSP blazar population. In this regard, the results of
recent and ongoing MWL polarisation VLBA observations will
be presented in a further publication.

4.3. Brightness temperature

By investigating the brightness temperature properties we can
obtain important information regarding the physical condi-
tions within the jet, namely the energy balance within the
emitting region. We find that the core brightness temperature
decreases as the frequency increases, with T obs

B,vlbi(15 GHz) >

T obs
B,vlbi(24 GHz) > T obs

B,vlbi(43 GHz). According to theoretical
models (e.g. Marscher 1995), there is a critical frequency
νc below (above) which the brightness temperature increases
(decreases) with frequency. Within this scenario, and accord-
ing to our findings, νc should be <15 GHz. Furthermore, by
investigating the brightness temperature in a large sample of
radio jets in a range of frequencies between 2 and 86 GHz, Lee
(2014) found on average νc ≈ 9 GHz. This decreasing trend of
T obs

B,vlbi with frequency could indicate that within the two emitting
regions probed by the 15 and 43 GHz VLBA observations there
is an acceleration of the jet flow with increasing distance from
the central engine (see also Melia & Konigl 1989; Marscher
1995; Lee et al. 2016; Nair et al. 2019).

The variability brightness temperature T obs
B,var (fourth line in

Table 5) for each observing frequency is higher than T obs
B,vlbi , as

expected because of the different dependence on δ. Given the
limitations of the current data sets, we note that for estimating
T obs

B,var the variability timescale is assumed to be of the order of the
average time range between the maximum and minimum values
observed in the core total intensity light curve. Even though this
approximation is not particularly accurate, it is suitable for the
aims of the current analysis. Using Eqs. (4) and (5), with T obs

B,vlbi
at the peak flux density, we can estimate both T int

B and δ:

T int
B =

√√√
T obs3

B,vlbi

T obs
B,var

and δ =

√√
T obs

B,var

T obs
B,vlbi

·

We obtain an average value for δ of ∼1.4, which is a typical
value for HSP objects as obtained from VLBI observations (e.g.
Giroletti et al. 2004; Lico et al. 2012; Piner & Edwards 2018).
Such a low value for the Doppler factor further supports our
conclusion that the Doppler boosting modulation alone cannot
account for the observed variability.

The resulting T int
B is of the order of 1.5 × 1010 K,

well below the ∼5 × 1011−1012 K inverse Compton limit
(Kellermann & Pauliny-Toth 1969), and in agreement with the
typical T obs

B found in HSP blazars (e.g. Piner et al. 2010;
Piner & Edwards 2014; Lico et al. 2016). The physical mecha-
nism generally invoked for explaining the T int

B values in HSPs is
energy equipartition between particles and the magnetic field.
Invoking equipartition yields an upper limit of ∼5 × 1010 K

(Readhead 1994). The T int
B estimated from our 15, 24, and

43 GHz observations is on average below the equipartition limit,
indicating that we are probing an emitting region where the mag-
netic field energy density (uB) is higher than the non-thermal
particle energy density (up). Using equation (5d) from Readhead
(1994) we find log(up/uB) ∼ −4.6. A similar physical scenario
is found in the innermost regions of the radio galaxy M 87, as
reported in Kim et al. (2018).

5. Summary and conclusions

The HSP blazar PG 1553+113 has been observed intensely since
an approximately two-year quasi-periodic variability pattern was
recognised in its γ-ray light curve (Ackermann et al. 2015). In
this work we explored the parsec-scale radio properties of the
source by means of a 15, 24, and 43 GHz VLBA observing cam-
paign in total and polarised intensity during the period 2015–
2017.

Two periods of enhanced activity around October 2015 and
June 2017 emerge from the total intensity light curve with a min-
imum around June 2016. However, in contrast to the γ-ray emis-
sion, no hints of quasi-periodic variability are found in the VLBI
emission or in the 15 GHz OVRO light curve over a period cov-
ering about 10 yr.

We detect polarised emission in the core region (with a polar-
isation percentage varying in the range ∼1 − 4%) that is variable
across epochs with no clear recurrent patterns in the light curve.
The polarisation angle has been found to be variable across
epochs as well, but without any clear connection to the total
intensity or polarised emission. We also find a variable RM in
the core region, ranging between −1.3 and −0.8 × 104 rad m−2.

The core brightness temperature is found to decrease with
increasing frequency, in agreement with Lee et al. (2016), likely
suggesting that an acceleration of the jet flow is occurring within
the emitting regions probed by the 15 and 43 GHz VLBA obser-
vations (Melia & Konigl 1989; Marscher 1995). Using both
T obs

B,vlbi and T obs
B,var we estimate a Doppler factor of ∼1.4 and

T int
B ∼ 1.5 × 1010 K, indicating that within the emitting region

the total energy is dominated by the magnetic field.
By means of a total intensity ridge-line analysis we constrain

the jet position angle across the different observing epochs. We
find that the jet direction varies in range between ∼40◦ and
∼60◦, indicating that geometric effects could play a role in the
observed emission variability through Doppler boosting modu-
lation. However, there is no direct and clear connection between
the jet wobbling motion and either the radio flux density or the
γ-ray variability pattern, and additional physical mechanisms
are invoked. One possible mechanism responsible for the jet
wobbling is the core-shuttle effect described by Hodgson et al.
(2017) and Lisakov et al. (2017). Another possibility is the pres-
ence of a binary SMBH system at subparsec separation, induc-
ing a precessing motion in the jet as well as perturbations in the
accretion disc with a consequent modulation in the accretion rate
(e.g. Ackermann et al. 2015; Caproni et al. 2017; Tavani et al.
2018). While evidence of binary SMBHs systems at kiloparsec
scales have been found in a few tens of objects through direct
detection of the two centres, parsec or subparsec systems, which
are expected to form quickly according to evolution models,
are more elusive. The detection of parsec- or subparsec-scale
binary SMBH systems would also be an important assessment
of the prediction of coalescence of SMBHs and of consequent
gravitational wave production (Begelman et al. 1980; Bhatta
2018; Ait Benkhali et al. 2020). This goal could be achieved
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in the next few years thanks to the efforts of the Event Hori-
zon Telescope project (Event Horizon Telescope Collaboration
2019), which could potentially allow us to spatially resolve sub-
parsec binary SMBH systems.

With the present VLBA monitoring we provide new and
valuable information for MWL studies of this peculiar object,
furthering our understanding of the physical mechanisms that
produce the observed periodicity in the γ-ray emission. This work
is intended to be part of a wider and extensive MWL observ-
ing program with regular monitoring of the source since 2015 at
different frequencies, the results of which will be presented in a
dedicated paper (MAGIC Collaboration et al., in prep).
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