Inactivation of Cone-Specific Phototransduction Genes in Rod Monochromatic Cetaceans

Christopher A. Emerling
Mark S. Springer
Noah Fugate
Rachna Patel
James Starrett

See next page for additional authors

Follow this and additional works at: https://poetcommons.whittier.edu/bio

Part of the Biology Commons
Inactivation of Cone-Specific Phototransduction Genes in Rod Monochromatic Cetaceans

Mark S. Springer1*, Christopher A. Emerling1,2, Noah Fugate1,3, Rachna Patel1, James Starrett1,4, Phillip A. Morin5,6, Cheryl Hayashi1 and John Gatesy1

1 Department of Biology, University of California, Riverside, Riverside, CA, USA, 2 Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, USA, 3 Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA, 4 Department of Biology, San Diego State University, San Diego, CA, USA, 5 Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA, 6 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA

Vertebrate vision is mediated by two types of photoreceptors, rod and cone cells. Rods are more sensitive than cones in dim light, but are incapable of color discrimination because they possess only one type of photosensitive opsin protein (rod opsin = RH1). By contrast, cones are more important for vision in bright light. Cones also facilitate dichromatic color vision in most mammals because there are two cone pigment genes (SWS1, LWS) that facilitate color discrimination. Cone monochromacy occurs when one of the cone opsins (usually SWS1) is inactivated and is present in assorted subterranean, nocturnal, and aquatic mammals. Rod monochromacy occurs when both cone photoreceptors are inactivated, resulting in a pure rod retina. The latter condition is extremely rare in mammals and has only been confirmed with genetic evidence in five cetacean lineages, golden moles, armadillos, and sloths. The first genetic evidence for rod monochromacy in these taxa consisted of inactivated copies of both of their cone pigment genes (SWS1, LWS). However, other components of the cone phototransduction cascade are also predicted to accumulate inactivating mutations in rod monochromats. Here, we employ genome sequences and exon capture data from four baleen whales (bowhead, two minke whales, fin whale) and five toothed whales (sperm whale, Yangtze River dolphin, beluga, killer whale, bottlenose dolphin) to test the hypothesis that rod monochromacy is associated with the inactivation of seven genes (GNAT2, GNB3, GNGT2, PDE6C, PDE6H, CNGA3, CNGB3) in the cone phototransduction cascade. Cone-monochromatic toothed whales that retain a functional copy of LWS (beluga whale, Yangtze River dolphin, killer whale, bottlenose dolphin) also retain intact copies of other cone-specific phototransduction genes, whereas rod monochromats (Antarctic minke whale, common minke whale, fin whale, bowhead whale, sperm whale) have inactivating mutations in five or more genes in the cone phototransduction cascade. The only shared inactivating mutations that were discovered occur in the three Balaenoptera species (two minke whales, fin whale), further suggesting that rod monochromacy evolved independently in two clades of baleen whales, Balaenopteroidea and Balaenidae. We estimate that rod monochromacy evolved first in Balaenopteroidea (~28.8 Ma) followed by P. macrocephalus (~19.5 Ma) and Balaenidae (~13.0 Ma).

Keywords: Cetacea, opsins, phototransduction, pseudogenes, rod monochromacy
INTRODUCTION

Vision in mammals is initiated when photoreceptors in the retina are activated by light. Each of two types of photoreceptor cells in the retina are rods and cones, each of which contains opsins, a pigment that is responsible for color discrimination. Rods are more sensitive than cones to dim light but possess only a single type of photosensitive pigment. Rods also document rod monochromacy. Emerling and Springer documented the inactivation of additional cone-specific genes in sperm whale and common minke whale (Balaenoptera physalus [fin whale]), Balaenoptera bonaerensis [Antarctic minke whale]) and five toothed whales (Physeter macrocephalus [sperm whale], Lipotes vexillifer [Yangtze River dolphin], Delphinapterus leucas [bottlenose dolphin], Orcinus orca [killer whale], Tursiops truncatus [bottlenose dolphin]) to test the hypothesis that rod monochromacy is associated with the inactivation of seven cone-specific genes (GNAT2, GNB3, GNGT2, PDE6C, PDE6H, CNGA3, CNGB3) in the cone phototransduction cascade. In addition to cataloging inactivation mutations (frameshifts, premature stop codons, splice site mutations), we perform selection analyses to test whether these genes have evolved neutrally in rod monochromatic cetaceans. We also use estimates of selection intensity (dN/dS values) and published timetrees for Cetacea to estimate when rod monochromacy evolved in the balaenid, rorqual, and sperm whale lineages.

MATERIALS AND METHODS

Ethics Statement

Samples from Choeropsis liberiensis, Delphinapterus leucas, and Balaenoptera physalus were obtained from the New York Zoological Society, which maintained a “frozen zoo” as a reservoir of wildlife samples that were made available to researchers world-wide to study the conservation, evolution, and ecology of various species. The sample for Choeropsis liberiensis is an organ tissue specimen taken from a necropsy of a captive animal from the Bronx Zoo that was collected ~20 years ago. The blood sample for Delphinapterus leucas derives from a regular health check-up that was administered to a captive animal at the New York Aquarium (previously Coney Island Aquarium) more than 15 years ago. The sample (skin) for Balaenoptera physalus is ~25 years old and derives from a stranded (deceased) animal for which New York Zoological Society staff collected samples. The Balaenoptera bonaerensis sample was obtained from skin biopsies in the Southwest Fisheries Science Center (SWFSC, specimen Z23603) Marine Mammal and Sea Turtle Research (MMASTR) Collection, which were obtained from the South Australian Museum, Adelaide, Australia (SAM M15375). Our collaborator, Annalisa Berta at San Diego State University, and her Masters student, Amanda Rychel, requested a tissue sample from SWFSC and utilized the sample to do a pilot study on mysticete (baleen) whale phylogeny in approximately 2002–2003 and subsequently published their work (Rychel et al., 2004). Shortly thereafter, Gatesy and Berta requested a transfer of baleen whale samples from SDSU to the University of California—Riverside. This request was approved by SWFSC, and the transferred sample was utilized in the hybridization capture experiments described below.

Database Mining

Gene names (OPNILW [LWS], OPNISW [SWS1], CNGA3, CNGB3, GNAT2, GNB3, GNGT2, PDE6C, PDE6H) were used as key words to search for mRNA sequences in GenBank. Nucleotide BLAST searches (http://blast.ncbi.nlm.nih.gov/Blast.cgi) were performed against NCBI’s whole-genome shotgun contigs using megablast with coding sequences from mRNAs.
as query sequences. Query sequences were from the same taxon when available or from a close relative (e.g., *Bos taurus* [cow] for *Capreolus capreolus* [roe deer]). We targeted the genomes of six cetaceans with assembled genomes (*Balaenoptera acutorostrata*, *Balaenoptera bonaerensis*, *Physeter macrocephalus*, *Lipotes vexillifer*, *Orcinus orca*, *Tursiops truncatus*), and six outgroups (*Camelus ferus* [wild Bactrian camel], *Sus scrofa* [domestic pig], *C. capreolus*, *B. taurus*, *Pantholops hodgsonii* [Tibetan antelope], *Capra hircus* [goat]). Retained contigs or relevant portions thereof were imported into Geneious 8.1 (http://www.geneious.com, Kearse et al., 2012) and manually annotated after using MUSCLE (Edgar, 2004) to align exons from *Homo sapiens* reference sequences against the individual contigs. We also blasted the sequence read archive for *Balaenoptera physalus* (fin whale; Yi et al., 2014) with query sequences from two of its congeners, *B. bonaerensis* and *B. acutorostrata*. Blast hits were downloaded and assembled in Geneious. Finally, we imported the genome of *Balaena mysticetus* (bowhead whale; Keane et al., 2015) into Geneious and queried this genome with discontinuous megablast using sequences from other mysticetes. Coding sequences were manually inspected for inactivating mutations including altered start codon missense mutations, premature stop codons, frameshift mutations, stop codon mutations, and altered splice sites at intron boundaries. The latter were identified following the AG (acceptor splice site)/GT (donor splice site) rule with an allowance for GC donor splice sites (Burset et al., 2000). Accession numbers for sequences that were mined from databases are provided in Supplementary Information.

**Hybridization Capture and Next Generation Sequencing**

Hybridization capture and next generation sequencing were used to obtain sequences for one outgroup taxon (*Choeropsis liberiensis*, pygmy hippopotamus) and three cetaceans including *Delphinapterus leucas* (beluga) and additional individuals of two species (*Balaenoptera physalus*, and *B. bonaerensis*) whose genome sequences are available on NCBI. DNA was extracted using the DNeasy Blood and Tissue kit (QiaGen). Our protocol for library construction and targeted enrichment for paired-end sequencing is described in detail elsewhere and was performed with the SureSelectXT Target Enrichment System for Illumina Paired-End Sequencing Library kit (Agilent) (Springer et al., 2016). We targeted the coding exons of seven genes (SWSI, LWS, GNT2, GNT2, PDE6C, PDE6H, CNGB3) for enrichment with a custom-designed biotinylated RNA library. Probes were compiled from cetacean genome sequences (*Tursiops truncatus*, *Orcinus orca*) and included 60-bp overhangs of introns at both the 5′ and 3′ ends. The fasta file of target sequences (exon + flanking introns) was entered into the Agilent SureDesign algorithm to generate 120-base long oligomers with sufficient overlap that each nucleotide position in the compiled database was present, on average, in five different oligomers. Paired-end sequencing (2 × 100) was performed on an Illumina HiSeq 2500 platform at the UC Riverside Institute for Integrative Genome Biology Genomics Core. FastQC v.0.10.0 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) with the no-group setting used to visualize per-base quality distributions of de-multiplexed fastq files for both read pair files. Based on these results, we trimmed the first three bases and the last base with FASTX-Toolkit v.0.0.13.2 (http://hannonlab.cshl.edu/fastx_toolkit/index.html), which resulted in 97 bp reads. We filtered out reads with all but three identical bases or a quality score below 30 at any base position with FastX-toolkit on each fastq file. PRINSEQ lite v.0.20.4 (Schmied and Edwards, 2011) was then used to find the read pairs that passed these filtering conditions. These read pairs were then interleaved into a single file using the ShuffleFastq script in RACKJ v.0.95 (http://rackj.sourceforge.net/Scripts/index.html#ShuffleFastq). Fastq files were imported into Geneious 7.1 (http://www.geneious.com, Kearse et al., 2012). Individual reads were mapped to reference (“target”) sequences and consensus sequences were assembled with a matching threshold of 85%. Accession numbers for new sequences are KX064683-KX064690 and KX118304-KX118323.

**Phylogeny Reconstruction**

Individual gene trees and the concatenation tree based on nine genes were estimated with RAxML 8.2.4 (Stamatakis, 2006, 2014) on CIPRES (Miller et al., 2010). Analyses were performed with a GTR + Γ model of sequence evolution (i.e., GTR + GAMMA option in RAxML), and the analysis with the concatenated data set allowed each gene to have its own parameters for the GTR + Γ model (RAxML does not allow for simpler models of sequence evolution). Rapid bootstrap analyses (Stamatakis et al., 2008) were performed with 500 pseudoreplicates. Bootstrap analyses and a search for the best ML tree were performed in a single run. In addition to maximum likelihood analyses, we also performed maximum parsimony analyses with the concatenated data set to determine if the results of different phylogenetic methods are in agreement with each other. A maximum parsimony search was implemented with PAUP 4.0a147 (Swofford, 2002) using the branch-and-bound search algorithm. A maximum parsimony bootstrap analysis was also performed with PAUP and employed 500 bootstrap pseudoreplicates with a branch-and-bound search for each pseudoreplicate.

**Selection Analyses**

Selection analyses were performed with codeml in PAML (Yang, 2007) for seven cone-specific phototransduction genes (*LWS*, *GNAT2*, *GNNT2*, *PDE6C*, *PDE6H*, *CNGA3*, *CNGB3*) for which inactivation is associated with rod monochromacy in various cetacean lineages (Meredith et al., 2013) as well as other rod monochromatic mammals (Emerling and Springer, 2014, 2015). SWSI is also cone-specific, but the inactivation of this gene occurred on deeper branches in Cetacea (i.e., stem odontocete and stem mysticete branches) and is associated with cone monochromacy rather than rod monochromacy (Meredith et al., 2013). GNB3, another phototransduction gene, is never inactivated in rod monochromats. Frameshift insertions were deleted and premature stop codons were recoded as missing data prior to running codeml analyses. Analyses were performed with Model 1 (one dN/dS ratio for all branches)
FIGURE 1 | RAxML phylograms (GTR + Γ) for nine genes that encode proteins in the cone phototransduction cascade. SWS1 and LWS are opsins; GNAT2, GNB3, and GNGT2 encode subunits of transducin; PDE6C and PDE6H encode subunits of phosphodiesterase; and CNGA3 and CNGB3 encode cGMP-gated-channel proteins.

Estimation of Inactivation Times
To estimate when rod monochromacy evolved in different lineages of Cetacea (i.e., Balaenidae, Physeter, Balaenopteridae), we used divergence times from McGowen et al. (2009) and equations from Meredith et al. (2009) that employ dN/dS ratios for functional (ωf), pseudogenic (ωp), and transitional (= mixed) branches (ωm) where transitions from cone monochromacy to rod monochromacy have been inferred (Meredith et al., 2013). We combined sequences for seven cone-specific, phototransduction genes that are inactivated in one or more rod monochromatic cetaceans, as well as in other mammalian rod monochromats (Emerling and Springer, 2014, 2015), to achieve more statistical power than is possible with individual genes. An underlying assumption of this approach is that all seven cone-specific genes have evolved under neutral selection coincident with the evolution of rod monochromacy in each of these lineages, even in cases where the accumulation of frameshift mutations, premature stop
codons, or other inactivating mutations has lagged behind the presumably “jobless” role of these cone-specific genes following inactivation of both \( SWS1 \) and \( LWS \). For confidence intervals on these inactivation dates, we used prop.test in the stats package of R to determine 95% confidence intervals on inactivation dates. Based on these values, and their sum of 196.6, prop.test (125.3, 0.566, 0.0163) was used to calculate 95% confidence intervals on inactivation dates.

Fossil occurrence data for Cetacea were downloaded from the Paleobiology Database (26 January 2016) using the taxon names Physeteroidea, Balaenidae, and Balaenopteroidea.

RESULTS

Alignments and Phylogeny

Alignments for nine phototransduction genes (\( SWS1, LWS, GNA\), \( T, GNB3, GNGT2, \) \( PDE6C, PDE6H, CNGA3, CNGB3 \)) were provided in Supplementary Information. RAxML gene trees for each of the nine genes are shown in Figure 1. The concatenated alignment is 11828 bp and the partitioned RAxML tree \((-lnL = -37085.256\) with bootstrap support percentages is shown in Figure 2. All clades received 100% bootstrap support excepting Cetuminantia (97%) and \( Balaenoptera b%

Inactivating Mutations

Inactivating mutations in \( SWS1 \) are present in all cetaceans including mutations that are shared by all odontocetes and mysticetes, respectively (Table 1). \( LWS \), in turn, is inactivated in \( Physeter macrocephalus \), \( Balaena mysticetus \), and all three species of \( Balaenoptera (B. acutorostrata, B. b%

Shared inactivating mutations in the phosphodiesterase subunits include a premature stop codon in \( PDE6H \) that is present in all species of \( Balaenoptera \) and a 4-bp frameshift deletion in exon 20 of \( PDE6C \) that is present in both individuals of \( Balaenoptera physalus \) and polymorphic in \( B. b%

Additional inactivating mutations in the phototransduction genes of rod monochromats are unique to single species including 13 mutations in \( Physeter macrocephalus, seven mutations in Balaena mysticetus, ten mutations in Balaenoptera physalus, one mutation in Balaenoptera acutorostrata, and two mutations in Balaenoptera b%

FIGURE 1 | RAxML phylogram based on a partitioned analysis of the concatenated alignment for nine phototransduction genes. Each gene was allowed to have its own GTR + \( \Gamma \) model of sequence evolution. Bootstrap percentages are shown for clades with support scores < 100%.
<table>
<thead>
<tr>
<th>Taxon</th>
<th>SWS1 (exons 1-5)</th>
<th>LWS (exons 1-6)</th>
<th>GNAT2 (exons 1-8)</th>
<th>GNB3 (exons 1-9)</th>
<th>GNGT2 (exons 1-2)</th>
<th>PDE6C (exons 1-22)</th>
<th>PDE6H (exons 2-4)</th>
<th>CNGA3 (exons 1-8)</th>
<th>CNGB3 (exons 1-18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odontoceti</td>
<td>E1 13G (exon 1)²</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Delphinidae (Orcinus + Tursiops)</td>
<td>Deletion of stop codon (exon 5)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Physeter macrocephalus</td>
<td>1 bp insertion (exon 1); donor splice site mutation (intron 4, &quot;GT&quot;→&quot;GA&quot;)</td>
<td>28 bp deletion (exon 5); 1 bp deletion (exon 5); stop codon mutation (&quot;TGA&quot;→&quot;TGA&quot;)</td>
<td>1 bp insertion (exon 8)</td>
<td>None</td>
<td>Stop codon (exon 2)</td>
<td>None</td>
<td>None</td>
<td>Deletion of exon 3; stop codon (exon 6); donor splice site mutation (intron 7, &quot;GT&quot;→&quot;GG&quot;); two different 1 bp insertions (exon 8)</td>
<td>None</td>
</tr>
<tr>
<td>Lipotes vexillifer</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Delphinapterus leucas</td>
<td>None⁵</td>
<td>None</td>
<td>None</td>
<td>Sequence not available</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Sequence not available</td>
<td>None</td>
</tr>
<tr>
<td>Orcinus orca</td>
<td>2 bp deletion (exon 4)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Tursiops truncatus</td>
<td>1 bp deletion (exon 1)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mysticeti</td>
<td>4 bp deletion (exon 1)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Balaena mysticetus</td>
<td>None⁵</td>
<td>535 bp deletion that includes last 77 bp of exon 4; donor splice site mutation (intron 3, &quot;AG&quot;→&quot;GG&quot;)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>1 bp insertion (exon 8)</td>
<td>1 bp deletion (exon 1); 1 bp insertion (exon 18)</td>
</tr>
<tr>
<td>Balaenoptera (all three species)</td>
<td>None⁶</td>
<td>22 bp deletion that includes first two bp of start codon; 1 bp deletion (exon 2)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Stop codon (&quot;TAG,&quot; exon 3)²</td>
<td>None</td>
</tr>
<tr>
<td>Balaenoptera physalus + B. bonaerensis</td>
<td>None⁷</td>
<td>None⁷</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Balaenoptera physalus</td>
<td>None⁷</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Acceptor splice site mutation (intron 2, &quot;AG&quot;→&quot;AA&quot;); stop codon and two 1 bp deletions (exon 8)</td>
<td>4 bp deletion (exon 4); stop codon (&quot;TAG,&quot; exon 9)²</td>
</tr>
</tbody>
</table>

(Continued)
Table 2 summarizes the results of selection (dN/dS) analyses. Model 1 (one dN/dS category for the entire tree) was rejected ($p < 1.0 \times 10^{-9}$) in favor of Model 2, which allows for five different dN/dS categories (one category for functional branches, three categories for transitional branches where rod monochromacy evolved, and one category for fully pseudogenic branches). The dN/dS value for functional branches (i.e., $\omega_f$) in Model 2 is 0.171 and 0.161 with CF1 and CF2, respectively. The dN/dS value for fully pseudogenic branches (i.e., $\omega_p$) in crown Balaenoptera, in turn, is slightly elevated above 1 (1.198 with CF1, 1.134 with CF2), although $\omega_p$ is not significantly different than 1.0 when Model 2 ($\omega_p = \text{free parameter}$) is compared to Model 3 ($\omega_p = 1.0$) (Table 2). This comparison (Model 2 vs. 3) suggests that elevation of the dN/dS value above 1 in crown Balaenoptera may be the result of random sampling error. For Models 2 and 3, two of the three transitional branches (Balaena, Physeter) have dN/dS values between $\omega_f$ and $\omega_p$, as is expected for branches with mixed histories that are part functional and part pseudogenic. The dN/dS value for stem Balaenoptera is slightly higher than for crown Balaenoptera, but the stem and crown Balaenoptera values are not significantly different from each other based on dN/dS analyses that enforced the same value for these branches (Table 2).

**Selection Analyses**

Point estimates and 95% confidence intervals for the timing of the evolution of rod monochromacy in three different cetacean lineages (Physeter, Balaena, stem Balaenoptera) are shown in Figure 5 and summarized in Table 3. These estimates are based on dN/dS ratios for the concatenation of seven cone-specific genes (LWS, GNAT2, GNGT2, PDE6C, PDE6H, CNGA3, CNGB3) that are known to become inactivated in association with rod monochromacy. Estimates are based on two different codon frequency models (CF1, CF2), estimated vs. fixed (1.0) values for the dN/dS ratio on branches that post-date the evolution of rod monochromacy, and equations that allow for one synonymous rate or two separate synonymous rates for functional and pseudogenic branches, respectively (Meredith et al., 2009). Eight point estimates for the timing of rod monochromacy in Physeter range from 23.58 to 15.94 million years ago (mean = 19.46 MYA). Point estimates for the onset of rod monochromacy in Balaena range from 15.94 to 10.40 MYA (mean = 12.97 MYA). Finally, all of the point estimates for the evolution of rod monochromacy on the stem Balaenoptera branch are coincident with the age of crown Mysticeti (28.79 MYA) on the timetree given that the dN/dS value on the stem Balaenoptera branch, which extends from crown Mysticeti (28.79 MYA) to crown Balaenoptera (13.80 MYA), is slightly higher than the estimated or fixed dN/dS value for fully pseudogenic branches (Table 2). Similarly, the upper 95% confidence interval for the evolution of rod monochromacy on the stem Balaenoptera branch is constrained by the age of crown Mysticeti, i.e., the age of rod monochromacy cannot be older than the age of crown Mysticeti because there are no inactivating mutations in cone-specific genes that are shared by all mysticetes. However, the lower bound of the 95% confidence
interval suggests that rod monochromacy may have evolved as late as 19.30 MYA in this lineage.

**DISCUSSION**

**Inactivating Mutations in the Cetacean Cone Phototransduction Cascade**

All living cetaceans are either cone monochromats or rod monochromats (Meredith et al., 2013). Cone monochromacy is inferred to have evolved independently on the stem odontocete and on the stem mysticete branches based on inactivating mutations in SWS1. These inactivating mutations occurred after a blueshift in RH1 on the stem cetacean branch, perhaps because the benefit of possessing SWS1 cones, with less efficient photon capture than rods, became increasingly small after the rods were blue-shifted. Rod monochromacy, in turn, evolved on at least five occasions in Cetacea based on the phylogenetic distribution of inactivating mutations in LWS (Meredith et al., 2013). Three instances of rod monochromacy are found in odontocetes (Physeter macrocephalus, Kogia breviceps, Mesoplodon bidens) and two occur in mysticetes (Balaenidae, Balaenopteridae). In all cases, rod monochromatic cetaceans are known to dive to depths of at least 100 m with physeteroids (P. macrocephalus, K. breviceps) and ziphiids (M. bidens) among the deepest diving mammals. The “pure rod” retina in rod monochromatic odontocetes may be viewed as an extreme adaptation to dim-light conditions in the mesopelagic (150–1000 m) and bathypelagic (>1000 m) zones where there is little (mesopelagic) or no (bathypelagic) down-welling light. In these instances, the pure rod retina may be useful for detecting bioluminescent prey, which in the extreme case of the bathypelagic zone are the only source of light. Odontocetes are capable of echolocation, and the combination of rod monochromacy plus echolocation may be more effective in locating prey than echolocation alone. Deep-diving mysticetes, in turn, are known to batch filter aggregations...
of tiny, bioluminescent prey at night and may also benefit from a pure rod retina with its higher density of rods that are more effective than cones at contrast detection (Meredith et al., 2013).

Among the rod monochromatic lineages, *P. macrocephalus*, Balaenidae, and Balaenopteroidea are represented by taxa with genome sequences or exon-capture data for cone phototransduction genes. Beyond inactivating mutations in *SWS1* and *LWS*, all three rod monochromatic cetacean lineages included in our study have inactivating mutations in additional genes in the phototransduction cascade: *GNAT2*, *GNGT2*, *CNGA3*, and *CNGB3* in *Physeter*, *PDE6C*, *CNGA3*, and *CNGB3* in *Balaena*; and *GNAT2*, *PDE6C*, *PDE6H*, *CNGA3*, and *CNGB3* in two or all three species of *Balaenoptera*. The occurrence of inactivating mutations in both cone opsins (*SWS1*, *LWS*), as well as in other genes that are crucial for the phototransduction cascade, provides compelling evidence that these taxa are rod monochromats as originally suggested by Meredith et al. (2013) based on inactivating mutations in *SWS1* and *LWS*. With the exception of *CNGA3*, all of the phototransduction genes with inactivating mutations in one or more cetacean rod monochromats also have inactivating mutations among non-cetacean rod monochromats including golden moles, sloths, and armadillos (Emerling and Springer, 2014, 2015). Among the phototransduction genes that we investigated, only *GNB3* is intact in rod-monochromatic cetaceans, presumably because this gene is pleiotropic (Keers et al., 2011; Kumar et al., 2013).

Similarly, this gene remains functional in golden moles and xerarthrans (Emerling and Springer, 2014, 2015). By contrast, all LWS-cone monochromats that have been investigated, including odontocetes in the present study (*Tursiops, Lipotes, Orcinus, Delphinapterus*) and non-cetacean taxa such as the Chinese pangolin (*Manis pentadactyla*; Emerling and Springer, 2015), have intact copies of the abovementioned phototransduction genes except for *SWS1*.

### The Timing of Rod Monochromacy in Cetacean Clades

The oldest member of Physeteroidea (sperm whales) is *Ferecetotherium kelloggi* from the late Oligocene (28.1–23.03 Ma) of Azerbaijan (Lambert et al., 2008; Gol’din and Marareskul, 2013). The physeteroids *Diaphorocetus poucheti*, *Idiorophus bolzanensis*, and *Scaldicetus bellunensis* are known from the early Miocene (Aquatanian, 23.03–20.44 Ma) (Paleobiology Database).

McGowen et al.’s (2009) timetree for Cetacea suggests that crown physeteroids last shared a common ancestor 24.21 Ma. Our point estimates for the evolution of rod monochromacy in *Physeter macrocephalus* are in the range of 23.58–15.94 Ma (mean = 19.46 Ma) and were calculated with McGowen et al.’s (2009) timetree date of 34.69 Ma for crown Odontoceti. These estimates are consistent with independent inactivations of *LWS* in *P. macrocephalus* and *Kogia breviceps* (pygmy sperm whale) after these taxa diverged from a common ancestor.
(Meredith et al., 2013). However, it will be important to examine other cone-specific genes in *Kogia* to determine if *Kogia* and *Physeter* share inactivating mutations in other cone phototransduction genes that are inactivated in *Physeter* (Figure 4; GNAT2, GNGT2, CNGA3, CNGB3).

All of our point estimates for the evolution of rod monochromacy in *Balaenoptera* are coincident with McGowen et al.’s (2009) timetree estimate of 28.79 Ma for the most recent common ancestor of *Balaenoptera* because the dN/dS value for the stem *Balaenoptera* branch, which extends from crown Mysticeti to the most recent common ancestor of *B. physalus*, *B. bonaerensis*, and *B. acutorostrata*, is slightly above one. However, 95% confidence intervals on these estimates suggest that rod monochromacy may have evolved as late as ~22–19 Ma in the lineage leading to *Balaenoptera*. Meredith et al. (2013) reported an intact copy of *LWS* in the neobalaenid *Caperea marginata* (pygmy right whale), which is the extant sister taxon to Balaenopteroidea (McGowen et al., 2009; Meredith et al., 2011; Gatesy et al., 2013). The putatively functional copy of *LWS* in *C. marginata* suggests that rod monochromacy evolved in the lineage leading to *Balaenoptera* (and other balaenopteroids) after Neobalaenidae diverged from Balaenopteroidea. McGowen et al.’s (2009) timetree date for this split is 22.59 Ma, although the putative stem balaenopteroid *Mauicetus parki* is slightly older (~23.03 Ma) and suggests an earlier split for Neobalaenidae and Balaenopteroidea (Boessenecker and Fordyce, 2015). If *Caperea* retains functional LWS-cones, as suggested by an intact copy of *LWS* in this taxon, then rod monochromacy in Balaenopteroidea probably evolved soon after the Neobalaenidae-*Balaenoptera* split. However, it will be important to determine if the shared stop codon in exon 3 of *PDE6H*, which occurs in all three species of *Balaenoptera* that were investigated, is also shared by other balaenopteroids and possibly *Caperea*.

The second mysticete lineage with rod monochromacy is Balaenidae and is represented in our study by *Balaena mysticetus*. Meredith et al. (2013) reported an inactivating splice site mutation in *LWS* that is shared by both extant balaenid genera, *Balaena* and *Eubalaena*. Our estimates for the evolution of rod monochromacy in *Balaena* suggest that this condition originated 15.94–10.4 Ma, which pre-dates McGowen et al.’s (2009) estimate for the last common ancestor of Balaenidae at 5.38 Ma and is consistent with Meredith et al.’s (2013) evidence for the evolution of rod monochromacy in the common ancestor of extant balaenids. The oldest stem balaenid fossil is *Morenocetus* from the early Miocene (~22–20 Ma) (McGowen et al., 2009). Our point estimates for the evolution of rod monochromacy in *Balaena* are all younger than 20 Ma and suggest that *Morenocetus* retained LWS-cones, although 95% confidence intervals on these estimates allow for the

---

**TABLE 2 | Results of dN/dS analyses with different branch categories and two different codon frequency models (CF1, CF2).**

<table>
<thead>
<tr>
<th>Analysis, Number of Branch Categories, and Statistical Comparisons</th>
<th>Codon Models, dN/dS Values, Likelihood Scores, and Statistical Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MODEL 1. ONE dN/dS CATEGORY</strong></td>
<td></td>
</tr>
<tr>
<td>All branches</td>
<td>0.228</td>
</tr>
<tr>
<td>Ln likelihood</td>
<td>−30410.398</td>
</tr>
<tr>
<td><strong>MODEL 2. FIVE dN/dS CATEGORIES</strong>&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td>Branches leading to cone dichromats or cone monochromats (ω&lt;sub&gt;1&lt;/sub&gt;)</td>
<td>0.171</td>
</tr>
<tr>
<td>Physeter branch</td>
<td>0.734</td>
</tr>
<tr>
<td>Balaena branch</td>
<td>0.630</td>
</tr>
<tr>
<td>Stem Balaenoptera branch</td>
<td>1.247</td>
</tr>
<tr>
<td>Crown Balaenoptera branches (ω&lt;sub&gt;2&lt;/sub&gt;)</td>
<td>1.198</td>
</tr>
<tr>
<td>Ln likelihood</td>
<td>−30272.266</td>
</tr>
<tr>
<td>Model 1 vs. Model 2</td>
<td>2Δln likelihood = 276.263, p &lt; 0.000000001 (df = 4)</td>
</tr>
<tr>
<td><strong>MODEL 3. FIVE dN/dS CATEGORIES WITH ω&lt;sub&gt;p&lt;/sub&gt; = 1.0&lt;sup&gt;b&lt;/sup&gt;</strong></td>
<td></td>
</tr>
<tr>
<td>Branches leading to cone dichromats or cone monochromats (ω&lt;sub&gt;1&lt;/sub&gt;)</td>
<td>0.171</td>
</tr>
<tr>
<td>Physeter branch</td>
<td>0.734</td>
</tr>
<tr>
<td>Balaena branch</td>
<td>0.630</td>
</tr>
<tr>
<td>Stem Balaenoptera branch</td>
<td>1.250</td>
</tr>
<tr>
<td>Crown Balaenoptera branches (ω&lt;sub&gt;2&lt;/sub&gt;)</td>
<td>1.000</td>
</tr>
<tr>
<td>Ln likelihood</td>
<td>−30272.878</td>
</tr>
<tr>
<td>Model 2 vs. Model 3</td>
<td>2Δln likelihood = 1.224, p = 0.269 (df = 1)</td>
</tr>
</tbody>
</table>

<sup>a</sup>There is no significant difference between Model 2 with five categories and a model with four categories that enforces the same dN/dS value for stem and crown Balaenoptera branches (CF1: ω<sub>2</sub> = 1.2076, p = 0.91702; CF2: ω<sub>2</sub> = 1.1428, p = 0.91221).

<sup>b</sup>There is no significant difference between Model 3 with five categories and a model with four categories that enforces ω = 1.0 for stem and crown Balaenoptera branches (CF1: ω<sub>p</sub> = 1.0, p = 0.50913; CF2: ω<sub>p</sub> = 1.0, p = 0.61853).

Abbreviations: CF1, codon frequency model 1; CF2, codon frequency model 2; ω<sub>1</sub>, dN/dS for functional branches; ω<sub>p</sub>, dN/dS for fully pseudogenic branches.

---

Frontiers in Ecology and Evolution | www.frontiersin.org 10 June 2016 | Volume 4 | Article 61
The Fate of Cone Cells in Rod Monochromatic Cetaceans

Schweikert et al. (2016) confirmed the total loss of cone-based photoreception in the retina of *Balaena mysticetus* based on immunofluorescence, histology, and ultrastructural analyses. Despite the loss of the outer segments of cone cells, where opsins reside, the retina of *B. mysticetus* retains putative cone pedicles and somata in addition to cone bipolar cells, which may be retained for rod-based signaling in mammals (Schweikert et al., 2016). Cone bipolar cells are required for the transmission of rod-based signals to the brain (though see below), so
the retention of cone bipolar cells is perhaps not surprising. Schweikert et al. (2016) suggest that conservation of cone signaling structures (i.e., cone synapses and cone bipolar cells) may facilitate multi-channel, rod-based signaling that is more sensitive to a broad range of light intensities than would be possible with rod-to-rod bipolar cell signaling alone.

A different arrangement occurs in Heterocephalus glaber (naked mole rat), where unusual retinal wiring may be consistent with functional rod monochromacy (Mills and Catania, 2004). Typical retinal wiring includes synapses between rods and rod bipolar cells, with the latter then synapsing to cone bipolar cells via AII amacrine cells before ultimately connecting to retinal ganglion cells. However, the rod bipolar cells of H. glaber depart from this canonical rule (in mammals) of making exclusive contact with AII amacrine cells. Instead, connections with AII amacrine cells are diminished and some rod bipolar cells make direct contact with retinal ganglion cells (Mills and Catania, 2004). These findings suggest that the need for cone bipolar cells in H. glaber has been effectively reduced, and is consistent with the inactivation of several cone phototransduction genes (LWS, GNAT2, PDE6C, PDE6H) in this species that hint at functional rod monochromony even though SWS1-cones are present (Emerling and Springer, 2014). An alternative hypothesis is that SWS1-cones in H. glaber have co-opted rod-specific paralogs of inactivated cone-specific genes (GNAT2, PDE6C, PDE6H; Emerling and Springer, 2014).

The phylogenetic mapping of inactivating mutations suggests that placental mammal diversity includes at least seven other lineages where rod monochromony evolved independently (Balaenopteroidea, Physeter macrocephalus, Kogia breviceps, Mesoplodon bidens, Chrysochloridae [golden moles], Cingulata [armadillos], Folivora [sloths]). Placentalia therefore provides a natural laboratory for inquiring whether or not cone somata and pedicles are always retained in rod monochromats or if there are multiple solutions to retinal rewiring in the absence of photosensitive cone cells. Importantly, investigations into the loss of cone input to the cone bipolar cells in these divergent lineages may shed light on fundamental questions regarding the evolutionary plasticity of neural (brain) circuitry. In the case of Cetacea, our point estimates for the origins of rod monochromony in different lineages suggest that this condition evolved earlier in both P. macrocephalus (∼23.6–15.9 Ma) and Balaenopteroidea (∼28.8) than in Balaenidae (∼15.9–10.4 Ma), so there has been more time for fine tuning of rod-based signaling to the brain in the absence of light-sensitive cones. The onset of rod monochromony in two xarthurran lineages, Cingulata and Folivora, is estimated to have occurred even earlier near the KPg boundary (∼66 Ma) based on dN/dS ratios (Emerling and Springer, 2015). Emerling and Springer’s (2015) point estimate of ∼66 Ma for the onset of rod monochromony in Folivora implies that rod monochromony evolved in the common ancestor of Folivora (sloths) and Vermilingua (anteaters), which last shared a common ancestor ∼56 Ma. However, the hypothesis that anteaters are also rod monochromats remains to be tested with genomic data (Emerling and Springer, 2015). Detailed investigations of retinal morphology in all of these lineages with immunofluorescence and histological/ultrastructural techniques, as in Schweikert et al. (2016), should provide insights into both developmental and functional constraints associated with rod monochromony in diverse placental mammals.

**AUTHOR CONTRIBUTIONS**

MS, CE, JG, and PM conceived the study. JS, CH performed exon capture experiments. MS, NF, RP, and CE collected data from genomic databases. MS performed phylogenetic and statistical analyses. MS, CE wrote the manuscript. MS, JG constructed figures. NF, RP, JS, PM, CH, and JG provided comments on the draft manuscript. All authors read and approved the final draft for submission.

**FUNDING**

This work was supported by NSF grant DEB-1457735 to JG, MS, and PM.

**ACKNOWLEDGMENTS**

We thank Brittany Hancock-Hanser for helpful comments. For providing DNA samples, we thank Southwest Fisheries Science Center–Genetics Archive (LaJolla, CA), the New York Zoological Society (Bronx, NY), South Australian Museum (Adelaide, Australia), G. Amato, and H. Rosenbaum. We thank C. Buell for artwork.

**SUPPLEMENTARY MATERIAL**

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fevo.2016.00061

**REFERENCES**


Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Springer, Emerling, Fugate, Patel, Starrett, Morin, Hayashi and Gatesy. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.