Archelosaurian Color Vision, Parietal Eye Loss, and the Crocodylian Nocturnal Bottleneck

Christopher A. Emerling
cemerlin@whittier.edu

Follow this and additional works at: https://poetcommons.whittier.edu/bio

Part of the Biology Commons

Recommended Citation

This Article is brought to you for free and open access by the Faculty Publications & Research at Poet Commons. It has been accepted for inclusion in Biology by an authorized administrator of Poet Commons. For more information, please contact library@whittier.edu.
Archelosaurian Color Vision, Parietal Eye Loss, and the Crocodylian Nocturnal Bottleneck

Christopher A. Emerling* 1

1Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA

*Corresponding author: E-mail: caemerling@berkeley.edu.

Abstract

Vertebrate color vision has evolved partly through the modification of five ancestral visual opsin proteins via gene duplication, loss, and shifts in spectral sensitivity. While many vertebrates, particularly mammals, birds, and fishes, have had their visual opsin repertoires studied in great detail, testudines (turtles) and crocodylians have largely been neglected. Here I examine the genomic basis for color vision in four species of turtles and four species of crocodylians, and demonstrate that while turtles appear to vary in their number of visual opsins, crocodylians experienced a reduction in their color discrimination capacity after their divergence from Aves. Based on the opsin sequences present in their genomes and previous measurements of crocodylian cones, I provide evidence that crocodylians have co-opted the rod opsin (RH1) for cone function. This suggests that some crocodylians might have reinvented trichromatic color vision in a novel way, analogous to several primate lineages. The loss of visual opsins in crocodylians paralleled the loss of various anatomical features associated with photoreception, attributed to a “nocturnal bottleneck” similar to that hypothesized for Mesozoic mammals. I further queried crocodylian genomes for nonvisual opsins and genes associated with protection from ultraviolet light, and found evidence for gene inactivation or loss for several of these genes. Two genes, encoding parietopsin and parapinopsin, were additionally inactivated in birds and turtles, likely co-occurring with the loss of the parietal eye in these lineages.

Key words: opsins, color vision, Crocodylia, Testudinata, parietal eye, nocturnal bottleneck.

Introduction

Vision is a critical sensory modality for most vertebrates, being important for foraging, predator avoidance, conspecific recognition, and migration. While aspects of the molecular basis for vision have been elucidated in many groups of vertebrates (Davies et al. 2012), Crocodylia and Testudinata (turtles) have largely been neglected. The currently species poor Crocodylia (24 extant spp.) originated ~93 Ma (Oaks 2011) and is represented today by Alligatoridae, Crocodylidae, and Gavialidae. Despite being the sole descendants of a Triassic radiation of pseudosuchian archosaurs (Nesbitt 2011) and the closest living relatives of the frequently colorful and highly visual Aves, little is known about how their visual system has evolved.

An important question about crocodylian vision stems from Walls (1942) seminal work on comparative ocular anatomy in vertebrates. In it, he states that crocodylian eyes “bear the stigmata of a long-continued nocturnality” (p. 613), including a rod-dominated retina, retinal regions containing cones that are “made as rod-like as possible” (Walls 1942, p. 616), a light collecting tapetum lucidum, and the absence of cone oil droplets, sclerotic rings (Nesbitt et al. 2013) and an annular pad of the lens (Walls 1942). Nagloo et al. (2016) also described a relatively large lens in crocodiles, typically associated with nocturnality, and retinal ganglion cell densities comparable to those of nocturnal squamates. Notably, many of these features are shared with mammals, which are thought to have undergone a long period of dim-light adaptation during the Mesozoic, termed a “nocturnal bottleneck” (Walls 1942; Gerkema et al. 2013). Recent studies have revealed that mammals reduced their genomic complement of light-associated genes, including both visual and nonvisual opsins (Gerkema et al. 2013) and enzymes that mitigate ultraviolet photo-oxidative damage (Kato et al. 1994; Osborn et al. 2015). If crocodylians did indeed experience a nocturnal bottleneck, a similar degree of light-associated gene inactivation and deletion should be reflected in crocodylian genomes.

Testudinata is represented today by >300 species distributed across 14 families, with a fossil record that dates back to the Triassic (Joyce and Gauthier 2004; Li et al. 2008). A combination of recent genomic and fossil discoveries suggests that turtles are diapsid amniotes (Chiari et al. 2012; Schoch and Sues 2015), but the ecological origins of turtles are contentious: the very early stem testudine Odontocheles semitestacea was discovered in marine deposits (Li et al. 2008) and phylogeneticists frequently recover turtles as sister to the marine sauropterygians (Lee 2013), but various other stem turtles show evidence of terrestrial adaptations (Joyce and Gauthier 2004; Scheyer and Sander 2007; Anquetin 2011). Regardless of the precise timing of aquatic adaptation, the phylogenetic distribution of extant testudines unambiguously reconstructs the ancestor of crown turtles as a freshwater inhabitant (Joyce and Gauthier 2004). This, coupled with shifts to marine habitats (e.g., Chelonoidea), suggests that...
turtles may have experienced molecular adaptations to their visual system, similar to what has occurred in marine mammals (Levenson et al. 2006; Meredith et al. 2013).

To test these hypotheses, I searched the genomes of four crocodylians and four testudines for genes encoding both visual and nonvisual photoreceptive opsins and genes encoding enzymes that protect against UV-light photodamage. I provide evidence that turtles ancestrally possessed the capacity for tetrachromatic (four color channels) color vision, with trionychid turtles losing some short wavelength visual opsin, whereas stem crocodylians underwent a reduction in their genes associated with light-sensitivity, including color vision, thus consistent with the hypothesis of passing through a nocturnal bottleneck early in their history. Additionally, the presence of parietal eye-related pseudogenes in crocodylians, birds, and testudines correlates with the loss of the parietal (third) eye early in their respective histories.

Results and Discussion

I examined publically available genomes for species representing the three crocodylian families, Alligatoridae (Alligator mississippiensis [American alligator; 156× coverage]), Alligator sinensis (Chinese alligator; 109×), Crocodyliidae (Crocodylus porosus [saltwater crocodile; 74×]), and Gavialidae (Gavialis gangeticus [Indian gharial; 81×]) (Wan et al. 2013; Green et al. 2014; Putnam et al. 2016) and cryptodiran turtles from the clades Testudinoidea (Chrysemys picta [Emydidae; painted turtle; 15×, improved with cytogenetic mapping]), Americhelydia (Chelonia mydas [Cheloniidae; green sea turtle; 110×]) and Trionychia (Trionychidae; Pelodiscus sinensis [Chinese pond turtle; 105×], Apalone spinifera [spiny soft-shell turtle; 33.4×]) (Wang et al. 2013; Badenhorst et al. 2015), along with outgroup taxa for comparison. I used a combination of gene predictions and BLAST searches against genomic assembly to determine the presence and functionality of 20 genes related to light-sensitivity (supplementary table S1 and dataset S1, Supplementary Material online).

Turtle Visual Opsins

Vertebrate phototransduction takes place in the rod and cone cells of the retina. Both cell types possess photosensitive pigments comprised of proteins called opsins covalently bound to retinoid chromophores. Upon absorbing light, these pigments initiate a phototransduction cascade that culminates in electrical signaling to the brain, resulting in vision. The ancestral vertebrate likely had five visual opsins, one expressed in the dim-light adapted rods (RH1), and four expressed in separate bright-light (photopic) adapted cone cells (SWS1, SWS2, RH2, and LWS), the latter allowing for photopic color discrimination (Davies et al. 2012).

Chrysemys picta and Chelonia mydas, possess all five visual opsins, suggesting that tetrachromatic color vision was the ancestral state for Durocryptodira and, by extension, Testudinata. All four turtle species retain genes encoding RH1 (rod opsin) as well as two classes of cone opsin (RH2 [rod-like cone opsin], LWS [long wavelength-sensitive opsin]). Both trionychid species show evidence of loss or inactivation of SWS1 (encodes short wavelength-sensitive opsin 1). Pelodiscus sinensis has a 19-bp deletion at the intron 1–exon 2 boundary and Apalone spinifera returned negative BLAST results. The relatively low coverage (33.4×) assembly for A. spinifera includes many small contigs, raising the possibility that its absence may be due to an assembly error. However, the genes that flank SWS1 in zebra finch, human and anole (FLNC, CALU) were recovered, suggesting whole gene deletion is probable. While A. spinifera retains SWS2 (encodes short wavelength-sensitive opsin 2), in P. sinensis it is highly unusual and suggestive of pseudogenization or neofunctionalization. Exon 4 has an 18-bp deletion and an apparent premature stop codon, though the alignment is ambiguous and there is a potential alternative splice donor site that eliminates the stop codon. Additionally, in place of the canonical stop codon, there is a 1,293-bp extension of the gene, more than doubling the length of the coding sequence. This region has a repetitive motif, and upon BLASTing it against GenBank, its highest similarity (E value 8e−43; Query cover: 97%; Ident: 67%) is to a predicted cardiomypathy-associated protein 5-like gene in Acipenser schrenckii (Acipenseridae; Amur sturgeon; 105×; GenBank: AF171115; E value 2e−43; Query cover: 99%; Ident: 96%).

This region has a repetitive motif, and upon BLASTing it against GenBank, its highest similarity (E value 8e−43; Query cover: 97%; Ident: 67%) is to a predicted cardiomypathy-associated protein 5-like gene in Acipenser schrenckii (Acipenseridae; Amur sturgeon; 105×; GenBank: AF171115; E value 2e−43; Query cover: 99%; Ident: 96%).

Earlier microspectrophotometry (MSP) studies found only three cone pigments in the durocryptodians Trachemys scripta (pond slider; Emydidae), Chelonia mydas and Mauremys reevesi (Chinese pond turtle; Geoemydidae) (Liebman and Granda 1971; Ohtsuka 1985), likely corresponding to SWS2 (k max values of these pigments (Davies et al. 2012). However, Loew and Govardovskii (2001) found an additional ultraviolet photoreceptor in T. scripta, probably representing an SWS1 pigment (k max 372 nm; Davies et al. 2012). This was not observed by Liebman and Granda (1971), likely due to a failure to examine the ultraviolet part of the spectrum (Loew and Govardovskii 2001). SWS1 pigments in both Chrysemys picta and Chelonia mydas are predicted to be ultraviolet-sensitive based on the presence of F86, S90, and M93 and T93, respectively (supplementary table S3, Supplementary Material online; reviewed in Emerling et al. (2015)). Though both MSP (Liebman and Granda 1971) and electroretinography (ERG; Levenson et al. 2004) studies failed to find definitive evidence of UV-sensitive cones in C. mydas, ERG measurements suggest an increase in sensitivity towards the UV, and a behavioral study on hatchling C. mydas indicates that they are capable of perceiving UV light (Witherington and Bjorndal 1991).
Table 1. Summary of Shared Inactivating Mutations in Focal Taxa

<table>
<thead>
<tr>
<th>Gene</th>
<th>Exon 1</th>
<th>Exon 2–Intron 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>RH2</td>
<td>Exon 1</td>
<td>Exon 2–Intron 3</td>
</tr>
<tr>
<td>Crocodilia</td>
<td>Deleted</td>
<td>55-bp deletion</td>
</tr>
<tr>
<td>OPN4M</td>
<td>Exon 1</td>
<td>Intron 6</td>
</tr>
<tr>
<td>Crocodilia</td>
<td>Start codon mutation</td>
<td>Splice donor mutation</td>
</tr>
<tr>
<td>EEVSLike</td>
<td>Exon 2</td>
<td>Exon 3</td>
</tr>
<tr>
<td>Crocodilia</td>
<td>Chanpy repeat element insertion, three 1-bp deletions, 1-bp insertion, two premature stop codons</td>
<td>Splice donor mutation</td>
</tr>
<tr>
<td>MT-Ox</td>
<td>Exon 1</td>
<td>Exon 2</td>
</tr>
<tr>
<td>Crocodilia</td>
<td>1-bp insertion, 8-bp deletion</td>
<td>1-bp deletion</td>
</tr>
<tr>
<td>OPNP</td>
<td>Exon 2</td>
<td>Exon 4</td>
</tr>
<tr>
<td>Alligator</td>
<td>7-bp deletion</td>
<td>4-bp deletion</td>
</tr>
<tr>
<td>OPNP</td>
<td>Exon 1</td>
<td>Exon 2</td>
</tr>
<tr>
<td>Crocodilia</td>
<td>Three 1-bp deletions</td>
<td>No BLAST results</td>
</tr>
<tr>
<td>Cryptodira</td>
<td>Two 1-bp deletions</td>
<td>Two premature stop codons</td>
</tr>
<tr>
<td>OPNPT</td>
<td>Exon 1</td>
<td>Exon 2</td>
</tr>
<tr>
<td>Crocodilia</td>
<td>No BLAST results</td>
<td>1-bp insertion, three premature stop codons</td>
</tr>
<tr>
<td>Aves</td>
<td>Start codon mutation, three 1-bp deletions, 23-bp deletion</td>
<td>No BLAST results</td>
</tr>
<tr>
<td>Cryptodira</td>
<td></td>
<td>1-bp deletion</td>
</tr>
</tbody>
</table>

Despite the inference that only two cone opsins genes were retained in the ancestral crocodilian, previous MSP experiments in crocodilians suggest that the number of cone types online) provide some evidence of visual adaptation in testudine history. Branch-sites tests estimated positive selection on LWS on the stem Cryptodira branch, and substitutions known to influence visual pigment spectral sensitivity (Yokoyama 2008) occurred on several branches: SWS1, Durocryptodira (T52V), Chrysemys (T93M, A97S, and V109A); SWS2, Durocryptodira (S91T), Chelonia (A161T and S292A); RH2, Chelonia (A164S). Between the putative loss of short-wavelength sensitive pigments in the two trionychian species and key tuning site substitutions in these pigments in durocryptodirans, it seems probable that there have been strong selective pressures on these pigments during testudine history. This may be due in part to the higher abundance of light with longer wavelengths in freshwater habitats. The low number of putative adaptive changes in the visual opsins systems in stem turtles may be partially due to a reliance on switches in opsin chromophores rather than on substitutions in opsins amino acids to tune color vision. The retinoid chromophore comes in two forms: a vitamin A1-derived chromophore leads to a more blue-shifted pigment, whereas a vitamin A2-derived chromophore produces a red-shifted pigment (Enright et al. 2015). Liebman and Granda (1971) found that the saltwater Chelonia mydas possessed the former, and the freshwater Trachemys scripta possessed the latter. This distinction is also found in saltwater vs. freshwater fishes and is thought to be an adaptation to the respective blue- and red-shifted waters they inhabit (Beatty 1984). Perhaps as stem turtles adapted to freshwater, they experienced minimal adaptations to their visual opsins genes because they switched to a vitamin A2-derived chromophore. Sea turtles subsequently reverted to a vitamin A1 chromophore, and the three spectral tuning site substitutions estimated in C. mydas’ cone opsins might be adaptations for vision in marine habitats.

Crocodilian Visual Opsins

In all four sampled crocodylian species, I recovered two intact cone opsin genes (SWS2 and LWS) and the rod opsin gene RH1, suggestive of dichromatic photopic color vision. Alligator sinensis has a deletion at the intron 3–exon 4 boundary of RH1, suggesting that it has become inactivated. A branch test of RH1 did not find a significantly higher dN/dS ratio in A. sinensis compared with the background (supplementary table S2, Supplementary Material online), and gene prediction suggests that the rod phototransduction genes are intact, indicating that if this mutation is real, it is very recent or has not led to the loss of RH1 function. Given that the loss of RH1 is exceptionally rare, with strong evidence of absence only in cave fishes (Niemiller et al. 2013), a gecko (Liu et al. 2015) and a snake (Simões, Sampaio, Loew, et al. 2016), this should be tested with more data. Synteny information provides evidence that SWS1 is deleted in crocodylians. As described above, FLNC and CALU flank SWS1 in amniotes, and both genes were found in all four crocodylians. However, they were never recovered on the same contig, making it difficult to completely rule out assembly errors. I recovered a highly fragmented RH2 in the genomes of all four crocodylians. Beyond sequence homology, identity of RH2 is confirmed by gene tree estimation (supplementary fig. S1, Supplementary Material online) and synteny: it is flanked by MLN and GRM4 in Gallus gallus (chicken) and Pelodiscus sinensis, and both of these genes flank RH2 on an Alligator mississippiensis contig. All four crocodylian RH2 sequences share inactivating mutations (table 1), suggesting pseudogenization in a common ancestor.

Despite the inference that only two cone opsins genes were retained in the ancestral crocodilian, previous MSP experiments in crocodylians suggest that the number of cone types
ranges from three to four (fig. 1). *Caiman crocodilus* (spectacled caiman), *Alligator mississippiensis*, *Crocodylus porosus*, and *Crocodylus johnstoni* (freshwater crocodile), all have single cones with pigments measured at λ_{max} of 424–444 nm (Govardovskii et al. 1988; Sillman et al. 1991; Nagloo et al. 2016). Only SWS1 and SWS2 pigments are known to peak in this range (Davies et al. 2012), and given the absence of SWS1 in crocodylian genomes, this implies that these single cones express the SWS2 opsin. A second single cone type has a λ_{max} of 535–554 nm, a spectral tuning position typically occupied by LWS pigments in vertebrates (Davies et al. 2012). Using Yokoyama (2008), five-sites rule to predict LWS λ_{max} (supplementary table S3, Supplementary Material online) and assuming a vitamin A1-derived chromophore, *A. mississippiensis* is expected to have a λ_{max} of 532 nm, very close to the 535 nm peak measured by MSP (Sillman et al. 1991). I did not discover a second LWS opsin gene in the genome of this species, suggesting that this spectral shift may be accomplished by changing the ratio of vitamin A1 to A2. Nagloo et al. (2016) used modeling to predict that *C. johnstoni* has a mixture of A1-/A2-derived chromophores, rendering its LWS cones red-shifted relative to those of *C. porosus*. However, Sillman et al. (1991) reported that none of the photoreceptor pigments they measured in *A. mississippiensis* fit an A2 curve, bringing this hypothesis into question. Nonetheless, because *A. mississippiensis* is a freshwater species, it suggests that this is a viable possibility.

A third cone pigment has been discovered in crocodylians that remains unaccounted for. This pigment’s λ_{max} ranges from 502 to 510 nm and has been found in a third class of single cone in *Crocodylus porosus* and *C. johnstoni* (Nagloo et al. 2016), the double cone accessory member in *Alligator mississippiensis* (Sillman et al. 1991), and one of two types of

Fig. 1. Diagrams of crocodylian retinal photoreceptors [based on Govardovskii et al. (1988), Sillman et al. (1991), and Nagloo et al. (2016)] and their predicted constituent opsin pigments. Numbers below photoreceptors indicate λ_{max} (peak absorption wavelength).
double cone accessory members in *Caiman crocodilus* (Govardovskii et al. 1988). This peak absorbance is typically associated with RH2 pigments (Davies et al. 2012), yet RH2 is pseudogenized in crocodylians. I hypothesize that these are rod opsin (RH1) pigments, which have been co-opted into these cones. As noted above, RH1 is present in all four crocodylian species I examined, with the possible exception of *Alligator sinensis*, and MSP measurements of the rod pigments reveal \(\lambda_{\text{max}} \) values consistent with RH1 (Davies et al. 2012). Importantly, the rod and putative RH1 cone pigments have nearly, or exactly, identical \(\lambda_{\text{max}} \) measurements in all four species (fig. 1); *Alligator mississippiensis* rod \(\lambda_{\text{max}} = 501 \text{ nm} \), putative RH1 cone \(\lambda_{\text{max}} = 503 \text{ nm} \); *Caiman crocodilus* rod \(\lambda_{\text{max}} = 506 \text{ nm} \), putative RH1 cone \(\lambda_{\text{max}} = 506 \text{ nm} \); *Crocodylus porosus* rod \(\lambda_{\text{max}} = 503 \text{ nm} \), putative RH1 cone \(\lambda_{\text{max}} = 502 \text{ nm} \); *Crocodylus johnstoni* rod \(\lambda_{\text{max}} = 510 \text{ nm} \), putative RH1 cone \(\lambda_{\text{max}} = 510 \text{ nm} \) (Govardovskii et al. 1988; Sillman et al. 1991; Nagloo et al. 2016).

While some vertebrates, particularly colubroid snakes (Schott et al. 2015; Simões, Sampaio, Douglas, et al. 2016), possess rod-like (transmuted) cones expressing cone opsin and cone-like rods expressing rod opsin, the condition in crocodylians appears unprecedented in two ways. The first is the presumed expression of RH1 in a class of true cones. Alternatively, the putative RH1 single cones may simply be cone-like rods, but this posits that some rods became cone-like while others retain their original morphology. Walls (1942, p. 615) stated that the *Alligator mississippiensis* retina includes some very rod-like cones near the tapetal region of the retina, giving some credence to the latter hypothesis. Ultrastructural examinations of these putatively RH1 cones and immunohistochemical staining of cone phototransduction elements are instrumental in testing these hypotheses. The second apparently unique trait is the putative expression of RH1 in double cones alongside a cone opsin (LWS). This could also be verified with immunohistochemistry to rule out the possibility that this is another opsin. Both of these traits are extremely unusual and warrant further investigation. This hypothesis has an analog in lissamphibians: frogs and salamanders possess two spectral classes of rods, known as red and green rods. Red rods express the typical RH1, whereas green rods have co-opted the cone opsin SWS2 (Ma et al. 2001). If this hypothesis withstands further scrutiny, crocodylians would provide a counterpart to the state in lissamphibians, and continue to demonstrate the remarkable evolutionary lability of vertebrate photoreceptors.

Because single cones contribute to color vision but double cones are thought to only provide achromatic information (Bowmaker 2008; though see Pignatelli et al. 2010), expressing RH1 in the accessory members of alligator and caiman cones likely does not affect color discrimination. However, the presence of RH1-expressing single cones in both *Crocodylus johnstoni* and *Crocodylus porosus*, would imply that crocodylids, at least since the common ancestor of *Crocodylus* (Oaks 2011), have recovered trichromatic color vision. In mammals, several lineages of primates have regained trichromatic color vision either via allelic variants of LWS (platyrrhines, lemuriforms) or the duplication of LWS (*Alouatta*, catarrhines; Davies et al. 2012). Some species of snakes are predicted to have regained trichromatic color vision by modifying their rod photoreceptors to be more cone-like (Schott et al. 2015; Simões, Sampaio, Douglas, et al. 2016). The condition in *Crocodylus* would seem to represent a novel pathway of reinventing trichromatic color vision in amniotes.

Branch-sites tests estimated that LWS underwent positive selection on the stem crocodylian branch, and ancestral sequence reconstructions point to several tuning site changes (supplementary tables S2 and S4, Supplementary Material online): SWS2, *Crocodylia* (A116T, S292A); LWS, *Crocodylia* (S180A, Y277F), *Alligator* (T285A). The SWS2 substitutions are identical to those of *Chelonia mydas*, possibly indicating adaptive convergence. On the stem *Crocodylia* branch, LWS is predicted to have shifted from a \(\lambda_{\text{max}} \) of 560 nm to a \(\lambda_{\text{max}} \) of 545 nm with a further blue-shifting on the stem *Alligator* branch to 532 nm. RH1 also experienced substitutions at site 13 on the stem *Crocodylia* (M13L) and *Alligator* (L13F) branches. This site is not known to affect spectral tuning, but it does appear to affect glycosylation of RH1 (Fernández-Sampedro et al. 2016). Notably, site 13 is conserved as methionine in all of the outgroup taxa in this study (supplementary table S3, Supplementary Material online), whereas therian mammals independently experienced a M13F substitution that was estimated to have been under positive selection (Fernández-Sampedro et al. 2016).

Light-Associated Gene Loss and the Crocodylian Nocturnal Bottleneck

In addition to the loss of two cone opsins, I found evidence that seven additional light-associated genes have become inactivated or deleted in crocodylians. *OPN4M*, *EEVS*-like, and *MT-Ox* each have numerous inactivating mutations shared among all four crocodylian species (table 1), providing strong evidence of pseudogenization in their common ancestor. *OPNP* is a pseudogene in all four species, but only the two *Alligator* species share inactivating mutations (table 1), possibly suggesting independent loss in Alligatorinae, Gavialidae and Crocodylidae. However, through a series of nested dN/dS ratio models, I found that each of the crown branches had dN/dS ratios that were not significantly different from a neutrally evolving value of 1, the sole exception being the stem *Crocodylidae* + Gavialidae branch using the F1X4 codon frequency model. When the crown *Crocodylia* branches were grouped together as one ratio, \(\omega \) was estimated to be 1.2062–1.3503 (not significantly different from 1; \(P > 0.25 \)), consistent with a hypothesis of relaxed selection in crown *Crocodylia*. Using F1X4, the stem crocodylian \(\omega (0.2382) \) was nearly significantly higher than the background (0.1212; \(P = 0.051 \)), whereas a second model (CodonFreq = 2) found the difference to be significant (0.2373 vs. 0.0959; \(P = 0.014 \); supplementary table S5, Supplementary Material online), lending more credence to the hypothesis of *OPNP* loss in a common ancestor. *OPNSL2* was not recovered via NCBI’s predictive pipeline or by directly BLASTing against NCBI’s whole genome shotgun assembly contigs database (WGS). *OPNSL2* in the zebra finch and *Pelodiscus sinensis* is flanked by CDC5L and...
MUT, and both genes were recovered from the same contig in Alligator mississippiensis, suggesting OPN5L2 was deleted in crocodylians. OPNPT and OPNPP were inactivated in crocodylians, birds and turtles and will be discussed separately below.

All of the genes described above or, in one case, closely related paralogs (OPN4X) were also independently lost on the stem mammalian lineage, and all of them have a function known or predicted to be associated with light exposure. Pinopsin (OPN5P) is a light-sensitive pigment expressed in the pineal of lizards (Frigato et al. 2006; Su et al. 2006; Wada et al. 2012) and birds (Okano et al. 1997), likely being important for melatonin secretion (Frigato et al. 2006). Notably, crocodylians are reported to completely lack a pineal (Roth et al. 1980), correlating, potentially causally, with the inactivation of OPN5P in this clade. Mammals also lack OPN5P (Gerkema et al. 2013), suggesting OPN5P was inactivated in mammals as well.

EEVS-like and MT-Ox were recently discovered to encode enzymes responsible for synthesizing gadusol, a compound that protects against ultraviolet radiation (Osborn et al. 2015). As in crocodylians, both genes are absent in mammals.

In addition to these genes, crocodylians lost several anatomical features associated with high acuity color vision in sauropsids, including sclerotic rings, an annular pad of the lens and colored cone oil droplets (fig. 2). Sclerotic rings are thought to stabilize the eye against changes in intraocular pressure.

Fig. 2. Timetree demonstrating the loss of various traits associated with photoreception in amniotes. Character states at terminal nodes represent most parsimonious ancestral state for that taxon, not necessarily the state for all members of the clade. Fossil taxa branch lengths are based on occurrences in the paleobiology database (i.e., they begin at the first appearance of the taxon in the fossil record), and therefore their times of divergence from crown lineages are probably underestimated. Highlighted branches indicate uncertainty of the timing of trait loss on the stem mammalian (blue) and crocodylian branches (red), and the loss of OPNPP and OPNPT in archelosaurs (green). Both genes are depicted as being lost at minimum concurrently with the parietal foramen (see text). Asterisks indicate characters that are lost uniquely on the phylogeny. Silhouettes from phylopic.org (supplementary table S7, Supplementary Material online).
pressure during accommodation (Walls 1942), and because high acuity vision, including accommodation, is largely associated with bright light conditions, the loss of sclerotic rings is typically thought to correlate with adaptation to dim light (Walls 1942; Atkins and Franz-Odendaal 2016). Nesbitt et al. (2013) showed that while various early crocodylomorphs, including *Terrestrischus*, *Thalattosuchia*, and *Pholidosauridae*, had sclerotic rings, more crownward lineages, such as *Goniopholididae* and *Shamosuchus*, appear to have lacked them. The absence of sclerotic rings in fossils does not definitively confirm their absence, because the delicate component ossicles are not always preserved. Nonetheless, the convincing absence of these rings in *Goniopholididae*, a taxon that appears in the fossil record 199.3 Ma (Paleobiology Database; PBDB; https://paleobiodb.org [last accessed June 2016]), provides a minimum age by which this trait was lost. *Pholidosauridae* first appears 174.1 Ma and *Thalattosuchia* is recorded as early as 199.3 Ma (PBDB), preventing any additional temporal resolution to the loss of this trait. I was able to date the inactivation of five genes (supplementary tables S5 and S6, Supplementary Material online), and all point estimates postdate the origin of *Goniopholididae* (fig. 2): 193.9 Ma (*EEVS*-like), 189.2 Ma (*MT-Ox*), 169.6 Ma (*RH2*), 148.7 Ma (*OPN4M*), and 111.8 Ma (*OPNP*; assumes inactivation in the stem crocodylian). Notably, the genes encoding the gadusol synthesis pathway, *EEVS*-like and *MT-Ox*, had extremely similar estimates for inactivation, a prediction that follows their shared function. Together, these data suggest a long period of dim-light adaptation in crocodylians that dates at least to the early Jurassic, coeval with the mammalian nocturnal bottleneck (fig. 2).

Gene Inactivation and the Loss of the Parietal ("Third") Eye in Turtles and Archosaurs

OPNPP (parapipopsin) and *OPNPT* (parietopsin) are not only inactivated in crocodylians, but also testudines and birds. Both genes have shared inactivating mutations in all four crocodylian species and all four testudines (table 1), respectively, providing a minimum point of inactivation in a stem crocodylian and stem cryptodire. In all of the birds examined, *OPNPT* is a pseudogene with shared inactivating mutations (table 1), and although the coding sequence for *OPNPP* was not recovered, a conserved region 5′ of the start codon was found in all of the taxa I examined. In the anole, *OPNPP* is flanked by *CACNA2D3* and *ACTR8*, both of which appear to be flanking this fragment in *Aquila chrysaetos* (golden eagle; supplementary table S1, Supplementary Material online). For both genes, the avian taxon sampling included a palaearganth (*Apteryx australis*; Southern brown kiwi) and several neognaths, suggesting that both were deleted/inactivated in a stem avian. For *OPNPP*, exons 1–3 were recovered in at least two turtles, but only exon 1 was obtained for crocodylians. None of the overlapping sequences possess unambiguous shared inactivating mutations, precluding the ability to confirm inactivation in the archosauromuran common ancestor. *OPNPT* similarly had minimal overlap between archosauromuran taxa, and not even birds and crocodylians had overlapping sequences, making it unclear if there are any shared archosauromuran inactivating mutations. While nested dN/dS ratio models provide evidence of relaxed selection in crown Archelosauria (supplementary table S5, Supplementary Material online; *OPNPP* ω: 0.8084-0.9306; *OPNPT* ω: 0.7424–0.9244; both not significantly different from 1), the stem Archelosauria branch in each case had an ω estimated at 999 (N*dN* = 30.6-44.3; N*dS* = 0.0), suggesting that this branch experienced positive selection prior to being lost, as opposed to a transition from purifying to relaxed selection. Based on the available data and analyses, it can confidently be assumed that both genes were lost at minimum on the stem crocodylian, avian and testudine branches and at most on the stem archosauromuran branch (fig. 2). Both genes were also lost in parallel in mammals (Gerkema et al. 2013), suggesting that similar selective pressures may have acted in these lineages.

Parapipopsin was discovered originally in the catfish parapinal and pineal organs, and later found in the lamprey, trout, and frog pineal (Kawano-Yamashita et al. 2014). Among amniotes, it is expressed in the green iguana (*Iguana iguana*) parietal eye (Wada et al. 2012), consistent with evidence that the parapineal organ and parietal eye are homologous (Kappers 1965). Parietopsin was discovered in the side-blotched lizard (*Uta stansburiana*) parietal eye (Su et al. 2006), and was later confirmed to be present in the same organ in iguanas (Wada et al. 2012). Given the expression patterns of these genes in squamates, their loss in both archosaurs and mammals (Gerkema et al. 2013) may be linked to the elimination of the parietal eye in these clades.

Squamates that possess a parietal eye also possess a parietal (pineal) foramen in their skulls, allowing for connection between the parietal eye and the pineal gland. Although this osteological feature is absent from modern archosaurs and mammals, many stem taxa possessed this foramen and presumably a parietal eye with it. Numerous stem mammal lineages, including caseids, gorgonopsians, and cynognathians possessed a parietal foramen, whereas Triassic probainognathians, including mammals, lack(ed) this trait (Schoch and Sues 2015; Benoit et al 2016). The absence of a parietal foramen is generally considered a synapomorphy for Archosauromorpha (Nesbitt et al. 2015; though see Ezcurra and Butler (2015) for evidence of parietal foramen polymorphism in proterosuchids), a clade that includes archosaurs (Nesbitt 2011), whereas the more inclusive clade Archosauromorpha includes extinct taxa that retained the parietal foramen (rhycosaurians, triophosaurians, and azendohsaurids). The stem testudine *Pleganochelys* (~220 Ma) and the earlier *Pappochelys* (~240 Ma) both lack a parietal foramen (Schoch and Sues 2015), whereas the putative stem turtle *Eunotosaurus* (~260 Ma) retains this structure. The association of the latter species with turtles, however, is contentious because it is frequently recovered in phylogenetic analyses with parareptilians (Lee 2013). Alternatively, recent analyses have frequently recovered sauroparetigynians (e.g., placodonts, plesiosaurs) as the sister group to crown and stem testudines (Lee 2013), and sauroparetigynians often retained a parietal foramen. Together, these provide evidence that the parietal eye, along with *OPNPP* and *OPNPT*, was lost in parallel in stem archosaurs and testudines.
The parietal eye is a photoreceptive organ (Eakin 1973) that appears to be closely linked to regulation of body temperature in ectothermic squamates (Stebbins and Eakin 1958; Hutchison and Kosh 1974; Phillips and Harlow 1981), likely through regulating melatonin secretion (Firth and Kennaway 1980). It is frequently absent in nocturnal and fossorial species, as well as those at lower latitudes (Gundy and Ralph 1975), suggesting that thermal stability might be an important factor selecting for its loss. If true, its parallel loss in archosaurs and mammals may be tied to the evolution of elevated metabolic rates in these lineages (Benoit et al. 2016; Legendre et al. 2016). In turtles, a hypothesized fossorial origin for this lineage (Lyson et al. 2016) may explain the loss of the parietal eye, because spending an increasing amount of time underground may render its function obsolete. Alternatively, it may have not been foshorial per se that led to the loss of the parietal, but the proposed mode of digging (Lyson et al. 2016), which involves fixing the skull to the roof of the burrow to stabilize the body. Presumably this would lead to repeated damage of the parietal eye, selecting for regression of this character.

Conclusions

The origins of the archelosaurian clades Testudinata and Crocodylia likely included transitions into niches that influenced their respective visual systems. Turtles probably underwent adaptations to freshwater habitats, and crocodylians show anatomical modifications suggestive of a long period of nocturnal adaptation. Consistent with these hypotheses, here I reported evidence of modifications and losses of the short-wavelength sensitive visual opsins in turtles and the loss of visual opsins, nonvisual opsins, and sunscreen enzymes in crocodylians. A combination of genomic and microspectrophotometry data suggests that crocodylians have co-opted the rod opsin (RH1) for single and double cone functions, implying reacquisition of trichromacy in crocodiles via a novel mechanism. Finally, the losses of parietopsin and parapinopsin in crocodylians, turtles, and birds correlate with the loss of the parietal eye in the fossil records of these clades. Together, these data provide greater evidence of the lability of the visual system in vertebrates and further demonstrate the power of comparative genomics to corroborate the fossil record in providing a record of adaptive events early in amniote history.

Materials and Methods

I searched the genomes of crocodylians and turtles (accession numbers in supplementary table S1, Supplementary Material online) using two approaches. The first utilized NCBI’s Eukaryotic Genome Annotation (EGA) pipeline. EGA is currently available for two crocodylians (Alligator mississippiensis, Alligator sinensis) and three testudines (Chelonia mydas, Chrysemys picta, and Pelodiscus sinensis). These taxa, along with two avian outgroup species (Gallus gallus, Taeniopygia guttata), were examined for the presence and functionality of 20 genes. EGA provides evidence of nonfunctionality/absence of genes in two ways: negative BLAST results (i.e., no gene prediction was possible) or by providing an annotation indicating the gene encodes a "Low quality protein". If neither of these outcomes occurred, the gene of interest was assumed to encode a functional transcript.

In cases where EGA provided evidence of nonfunctionality, I designed in silico probes to obtain sequences directly from NCBI’s whole genome shotgun contig (WGS) database. To design the probes, I first obtained reference mRNA sequences from GenBank, with the exception of EEVS-like. No mRNA sequences are available for EEVS-like so I used a predicted sequence following Osborn et al. (2015). I then BLASTed (megablast) the reference sequences against a reference genome (WGS) to obtain a contiguous sequence encompassing exons, introns and 5' and 3' flanking DNA. The contiguous sequence was aligned to the reference sequence using Muscle (Edgar 2004) in Geneious version 9.1.2 (Kearse et al. 2012), manually adjusted to allow for exon annotation, and was subsequently used as a probe to capture sequences of the taxa of interest by BLASTing (discontiguous megablast) against WGS. In cases of negative BLAST results, I relaxed the search parameters and/or used alternative probes from more closely related taxa. For examples in which I was unable to obtain sequences from any crocodylian species, I used synteny data from amniote taxa in Ensembl to test for evidence of gene deletion. The resulting BLAST hits were aligned to the reference sequence and examined for inactivating mutations (e.g., premature stop codons, frameshift indels, splice site mutations, and start codon mutations).

I searched for relevant genes in the genomes of four crocodylians (Crocodylus porosus, Gavialis gangeticus, Alligator mississippiiensis, and Alligator sinensis) and four testudines (Chrysemys picta, Chelonia mydas, Pelodiscus sinensis, and Apalone spinifera). For OPNPT and OPNPP, several avian genomes were additionally queried. The genes of interest include SWS1, SWS2, RH1, RH2, LWS, OPNP, OPNPT, OPNPP, OPNVA (vertebrate ancient opsin), OPN4X, OPN4M, OPN3 (encephalopsin), OPNS (neuropsin), OPNSL1 (neuropsin-like 1), OPNSL2, RH (peropsin), RGR (retinal G protein-coupled receptor), EEVS-like, MT-Ox, and the gene encoding photolyase. Visual opsin tuning sites were obtained from Yokoyama (2008).

In instances where one or more species showed evidence of pseudogenization, I performed gene inactivation dating estimates as detailed in Meredith et al. (2009) with some modifications. In addition to removing codon positions with ambiguous homology, I deleted every codon position that was not present in at least one of the pseudogenic sequences. Because dN/ds ratios can differ across a gene, this ensured comparisons solely between the sites for which I had data for the focal taxa. For MT-Ox, I deleted exon 6 in the analyses because it is an ultra-conserved element and therefore unlikely to evolve under relaxed selection. I compared models with estimates of branches putatively under relaxed selection to models under which the branch ω was fixed at 1. If they were not significantly different, I used the mixed branch ω estimates from the latter models (ω fixed at 1) for gene inactivation calculations. The ages of crown Crocodylia and Archosauromorpha were assumed to be 92.84 Ma (Oaks 2011; four analyses mean) and 245 Ma (Shedlock and
Edwards 2009; timetree.org [last accessed June 2016], median age), respectively. dn/dS ratio analyses for dating gene inactivations, branch tests, branch-site tests and ancestral sequence reconstructions were performed with PAML ver. 4.8 (Yang 2007). Branch and branch-site tests allow for dn/dS ratio models whereby ω is estimated on assigned branches in a phylogeny. Branch tests assume a single ω for the entire gene, whereas branch-site tests allow for the gene to be broken up into purifying, relaxed and positive selection categories. Branch-site tests and ancestral sequence reconstructions implemented the F3X4 (CodonFreq = 2) codon frequency model. Gene inactivation estimate analyses implemented both F1X4 (CodonFreq = 1) and F3X4 codon frequency models. F1X4 calculates codon frequencies from average base compositions, and F3X4 does so using average base compositions at the different codon positions. The topologies used in the analyses are based on Chiari et al. (2012), Oaks (2011), and Crawford et al. (2015).

I estimated a phylogeny of the five visual opsins, OPN4M, OPN4X, OPNPP, OPNPT, and OPN4Y to verify the orthology of the Archosaurian visual opsins and opsin pseudogenes (supplementary fig. S1, Supplementary Material online). Alignments of each opsin were aligned successively using the Translation alignment tool in Geneious and adjusted manually. A phylogeny was estimated using RAxML (Stamatakis 2014) with the GTRGAMMA model on CIPRES (phylo.org; last accessed September 2016; HPC2 on XSEDE), and included 500 bootstrap replications using the GTRCAT model.

I predicted the \(\lambda_{\text{max}} \) of SWS1 and LWS pigments in testudines and crocodylians, respectively, using key tuning sites known to confer spectral sensitivity (Yokoyama 2008). Though it is not currently feasible to perfectly predict \(\lambda_{\text{max}} \) assigning ultraviolet vs. violet sensitivity in vertebrates is generally reliable (Yokoyama 2008; Hauser et al. 2014; see Emerling et al. 2015, supplementary tables S1 and S5, Supplementary Material online), and the “five-sites rule” for LWS allows for greater precision in estimating \(\lambda_{\text{max}} \) for this opsin (Yokoyama 2008).

Supplementary Material
Supplementary data are available at Molecular Biology and Evolution online.

Acknowledgments
I thank David Gower, an anonymous reviewer, and the MBE editorial team for helpful comments on the manuscript and Michael Nachman for helpful discussions. This research was supported by a National Science Foundation (Div of Biological Infrastructure) Postdoctoral Research Fellowship in Biology (Award #1523943).

References
Hauser FE, Hazel IV, Chang BS. 2014. Spectral tuning in vertebrate short wavelength-sensitive 1 (SWS1) visual pigments: can