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ABSTRACT

We have combined very long baseline interferometry (VLBI) data from several programs in order to resolve
differences in reported parsec-scale jet speeds for the TeV gamma-ray source Markarian 501. Data from the Very
Long Baseline Array (VLBA) 2 cm survey, and 8 and 15 GHz data from the Radio Reference Frame Image
Database, have been combined with data from a 5 GHz VLBI Space Observatory Programme observation to
determine the apparent motions of jet components in this source. The combined data set consists of 12 observations
between 1995 April and 1999 July. Four jet components are detected at most epochs, all of which are clearly
subluminal (i.e., with apparent speeds less than the speed of light) and two of which appear stationary. The
established TeV gamma-ray sources Mrk 501 and Mrk 421 thus both have subluminal parsec-scale jets, in contrast
to the apparently superluminal jets of the majority of GeV sources detected by EGRET. No new VLBI component
has emerged from the core following the extended TeV high state in 1997, again in contrast to the general
behavior of GeV gamma-ray sources.

Subject headings: BL Lacertae objects: individual (Markarian 501) — techniques: interferometric

On-line material: machine-readable table

1. INTRODUCTION

The BL Lacertae object Markarian 501 (1652�398, J1653�
3945, DA 426) has been well studied at radio wavelengths (e.g.,
Mufson et al. 1984; Gabuzda et al. 1992), but interest in the
source was rejuvenated by the discovery of TeV gamma-ray
emission (Quinn et al. 1996). A prolonged high state at TeV
energies in 1997 included activity on timescales of several hours,
implying that the TeV gamma rays originate in a relatively com-
pact area (see, e.g., the review of Catanese & Weekes 1999).
The detection of correlated X-ray and TeV gamma-ray variability
in the other well-studied TeV source, Markarian 421, is strong
evidence in favor of the X-ray emission being the high end of
the synchrotron component of the spectral energy distribution
(SED), with the TeV emission arising from inverse Compton
scattering of photons by the synchrotron-emitting electrons, and
such a model is also widely accepted for Mrk 501.

On the parsec scale, VLBI observations have revealed that a
jet emerges from the core at a position angle of∼180� and bends
by ∼90� within the first∼2 mas. The jet extends to the east until
∼20 mas from the core, when it bends further, finally reaching
the position angle of∼45� seen on the kiloparsec scale (Conway
& Wrobel 1995; Giovannini et al. 1999). The parsec-scale jet of
Mrk 501 is one-sided, and it is assumed that this jet is rela-
tivistically Doppler-boosted, while the counterjet is Doppler-
deboosted to such an extent that it is invisible at the current
sensitivity of VLBI observations. The jets are believed to orig-
inate in the accretion disk surrounding a central supermassive
black hole, which for Mrk 501 has been suggested to have a
mass of 10 M (Falomo, Kotilainen, & Treves 2002).8.93�0.21

,

A number of different motions have been reported for com-
ponents in the Mrk 501 jet, ranging from mas0.27� 0.02
yr (Gabuzda et al. 1994) to 2.4 mas yr (Giovannini et al.�1 �1

1999). These studies have relied on only a small number of
epochs, typically less than four, and, in hindsight, have probably
underestimated the errors in locating jet components. As il-

lustrated by Piner et al. (1999) for Mrk 421, a reliable deter-
mination of component motions generally requires larger, mul-
tiepoch data sets.

Here we study the parsec-scale jet of Mrk 501 from 12 VLBI
observations spanning 4.28 yr, at frequencies of 5, 8, and
15 GHz. Mrk 501 lies at a redshift of 0.034 (Wills & Wills
1974) that, for the value of km s Mpc adopted�1 �1H p 650

throughout his paper, corresponds to a distance of 155 Mpc.
At this distance, an angular separation of 1 mas corresponds
to a projected linear distance of 0.72 pc.

2. VLBI OBSERVATIONS

We have compiled data from three programs for this study:
the Very Long Baseline Array (VLBA) 2 cm survey (Keller-
mann et al. 1998),1 the Radio Reference Frame Image Database
(RRFID; Fey & Charlot 1997),2 and a single VLBI Space Ob-
servatory Programme (VSOP; Hirabayashi et al. 1998, 2000)
observation. The data used in this study are summarized in
Table 1.

The VLBA 2 cm survey is being undertaken at multiple epochs
to study the properties and evolution of over 100 active galactic
nuclei. The Mrk 501 observations consisted of eight scans at
1 hr intervals of typically 5 minutes duration. Data were recorded
with a bandwidth of 64 MHz using 1 bit samples and left-circular
polarization. An image derived from the 1997 March data used
in this Letter was published by Kellermann et al. (1998). The
full 10 station array was used at all epochs except the last, for
which the St. Croix telescope was unavailable.

The RRFID of the US Naval Observatory is a program to
regularly image the radio sources used for precise astrometry.
The VLBA was used at all epochs, although the 1995 October
observation was made without the Mauna Kea and North Lib-
erty telescopes. The 1998 June observation was made with the

1 See also http://www.cv.nrao.edu/2cmsurvey.
2 See also http://rorf.usno.navy.mil/rrfid.shtml.
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TABLE 1
Observations of Mrk 501

Date
Frequency

(GHz)

Synthesized Beam

Image rms Noise
(mJy beam )�1 Program

FWHM of Major Axis
(mas)

FWHM of Minor Axis
(mas)

P.A. of Major Axis
(deg)

1995 Apr 8 . . . . . . . 15 0.96 0.52 �5.2 390 2 cm survey
1995 Apr 12 . . . . . . 8 1.33 1.26 18.4 675 RRFID
1995 Oct 17 . . . . . . 15 1.24 0.59 �1.6 1195 RRFID
1995 Dec 15. . . . . . 15 0.96 0.54 �7.1 320 2 cm survey
1996 Apr 23 . . . . . . 15 0.85 0.66 2.2 565 RRFID
1996 Apr 24 . . . . . . 8 1.89 1.22 19.9 445 RRFID
1996 Jul 10. . . . . . . 15 0.96 0.53 �1.4 275 2 cm survey
1997 Mar 13. . . . . . 15 0.95 0.54 �8.8 205 2 cm survey
1998 Apr 7 . . . . . . . 5 0.58 0.23 21.9 570 VSOP
1998 Jun 24. . . . . . . 8 0.94 0.76 �19.7 515 RRFID
1998 Oct 30 . . . . . . 15 0.90 0.53 2.9 300 2 cm survey
1999 Jul 19. . . . . . . 15 1.26 0.61 �8.7 290 2 cm survey

Fig. 1.—Image of Mrk 501 at 15 GHz from the RRFID observation in 1996
April. The positions of the core and jet components are indicated (see Table 2
for details). The beam, mas (FWHM) at a position angle of 2�, is0.85# 0.66
shown at the bottom left-hand corner. The contours are�1% (dashed), 1%, 2%,
4%, 8%, 16%, 32%, and 64% of the map peak of 485 mJy beam�1.

TABLE 2
Gaussian Model Fits to Source Components

Epoch
Frequency

(GHz) Component ID
Sa

(mJy)
rb

(mas)
P.A.b

(deg)
ac

(mas)

1995 Apr 8. . . . . . 15 Core 489 … … 0.17
C4 114 0.75 172.1 0.63
C3 84 2.32 147.7 1.25
C2 57 4.01 133.1 1.95
C1 62 7.45 113.0 2.58

Note.—Table 2 is published in its entirety in the electronic edition of the
Astrophysical Journal. A portion is shown here for guidance regarding its form
and content.

a Flux density.
b Polar coordinates of the center of the Gaussian relative to the core. The

position angle is measured from north through east.
c FWHM of the Gaussian.

addition of the Fairbanks 26 m (Alaska), Green Bank 20 m
(West Virginia), Kokee Park 20 m (Hawaii), Medicina 32 m
(Italy), Ny Alesund 20 m (Norway), Onsala 20 m (Sweden),
and Westford 18 m (Massachusetts) telescopes. Typically, four
scans of∼3 minutes were made, with bandwidths of 16 MHz
for the first two epochs, 32 MHz for the 8 GHz observations
of the last two epochs, and 64 MHz for the 15 GHz observation
in 1996 April. Right-circular polarization is recorded for all
RRFID observations. An image from the 1995 April 12 epoch
at 8.4 GHz was published by Fey & Charlot (1997).

The 5 GHz VSOP observation, in 1998 April, was made over
a 13 hr period with theHALCA satellite, the VLBA, and the
Effelsberg 100 m (Germany) telescope. Interferometric fringes
to the satellite were detected from tracking passes totaling 7 hr.
In the standard VSOP observing mode, 32 MHz of the 2 bit–
sampled, left-circular polarization data is recorded. Although
made at the lowest frequency considered here, the long baselines

to the orbiting telescope result in the synthesized beam size for
this observation being the smallest of these data. The VSOP data
considered here were combined with a 1.6 GHz VSOP obser-
vation 1 day later to derive a spectral index map of the source
(Edwards et al. 2000a).

3. ANALYSIS

The data were fringe-fitted in AIPS, and we have imaged all
data ourselves using the DIFMAP package. Beams were cal-
culated using natural weighting (uvweightp 0, �1 in DIF-
MAP), with the exception of the VSOP observation for which
uniform weighting (uvweightp 2, 0 in DIFMAP) is more ap-
propriate (Hirabayashi et al. 2000). An image from the 15 GHz
RRFID observation in 1996 April is shown in Figure 1.

Model fitting of the images was carried out in DIFMAP. As
an inspection of Figure 1 reveals, at most epochs four jet com-
ponents were required, in addition to the core, to provide a
good representation of the data. We have labeled these C1–C4,
with C1 being the component farthest from the core. Circular
Gaussian components were fitted at all epochs. Full details of
the model fits are given in Table 2. Reduced -values for the2x
fits are not given in the table since they are dependent on the
way the data from the different programs were reduced. Thus,
while model fits represent a minimum in for the given num-2x
ber of components, the comparison of -values between data2x
from different programs is potentially misleading (see also Pi-
ner et al. 1999).

The positions of all model-fitted jet components are plotted
as a function of time in Figure 2. In order to determine the
uncertainty in the component location for the purposes of de-
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Fig. 2.—Component positions and weighted linear fits to component mo-
tions. The squares denote 15 GHz observations, the triangles denote 8 GHz
observations, and the diamonds are used for the 5 GHz VSOP observation.
Note that the two observations in 1996 April have been offset from each other
in the plot for clarity.

termining component motions, we have projected the beam
major axis onto the line joining the component and core and
then taken a fraction of this projected length as the error in
position. For the extended, outermost component, C1, we con-
servatively adopted half a projected beamwidth for the uncer-
tainty. For C2 and C3, we used one-quarter of the projected
beamwidth, and for the innermost component, C4, we used
one-eighth of the beamwidth. Motions were determined by
weighted linear fits to the data. As shown in Figure 2, both C1
and C4 show little evidence of motion over the 4.28 yr period.
Both C2 and C3 show clear evidence of motion, with an ap-
parent component speed for C2 of ( )c and for C3 of0.6� 0.1
( )c. The apparent speeds along the jet, as opposed to0.3� 0.1
radial separations, are, within errors, the same. These speeds
supersede the preliminary values reported in Piner et al. (2002).

4. DISCUSSION

Our component locations agree well with those reported from
a contemporaneous 5 GHz observation made in 1996 June as
part of the VLBA Prelaunch Survey (Fomalont et al. 2000).
We can also extrapolate our derived motions and compare them
with model fits to the 5 GHz observations at epochs 1987.4
(Gabuzda et al. 1992) and 1989.3 (Gabuzda et al. 1994). The
extrapolated motion of C3 is consistent with the positions of
the K2 of Gabuzda et al. (1992, 1994), assuming uncertainties
∼3 times larger than the�0.1 mas adopted by these workers.
The K1 of Gabuzda et al. (1992, 1994), with similarly increased
uncertainties, is consistent with the extrapolated motion of C2,
particularly if the speed of C2 lies at the lower end of the range
determined in § 3 (assuming a constant motion). These iden-
tifications were qualitatively suggested by Edwards et al.
(2000b) but are quantitatively borne out by the fuller analysis
presented here.

The speeds of C1 and C4 are formally consistent with zero;
i.e., they appear to be stationary components. Before consid-
ering this further, we reconcile this result for C4 with the ob-
servations of Marscher (1999), who reported the detection at
22 GHz of a resolved component between 0.5 and 1 mas from
the core, with an apparent motion derived from three epochs
between 1997 April and August of mas yr , cor-�10.96� 0.1

responding to ( )c. This location is consistent with our2.3� 0.2
C4; however, we do not see such rapid motion over the 4 yr
period. The motion reported by Marscher (1999) corresponds
to 0.27 mas in the 0.29 yr the observations spanned. In our
data, C4 ranges between 0.59 mas from the core (1998 April
7) and 0.83 mas from the core (1999 July 19), a range of 0.21
mas, similar in magnitude to that of Marscher (1999). Any
attempt at further interpretation is complicated by the fact that
there are likely to be frequency-dependent offsets in the sep-
aration of components from the core (see, e.g., Lobanov 1998)
in our data, which would be most important for C4.

Stationary components have been reported for a number of
sources in the past, with a detailed study being made as part
of the multiepoch monitoring program of Jorstad et al. (2001b).
The monitoring revealed that the superluminal speeds detected
for these of EGRET-detected blazars were much faster than for
the general population of bright compact radio sources; how-
ever, evidence was also found for at least one stationary com-
ponent in 27 of the 42 sources (Jorstad et al. 2001b). Jorstad
et al. suggested that the stationary components within several
parsecs of the core were associated with standing recollimation
shocks caused by pressure imbalances at the boundary between
the jet and the surrounding medium. In contrast, the stationary
components farther from the core tended to be associated with
bends in the parsec-scale jet. There is support for this scenario
in our data. C4 is located at a projected distance of∼0.5 pc
from the core and is quite plausibly associated with a recol-
limation shock. C1, on the other hand, is an extended com-
ponent, which 1.6 GHz VLBI imaging has revealed is asso-
ciated with a significant change in the jet from a bright “spine”
to a limb-brightened morphology (Giovannini et al. 1999).

If we assume that our fastest observed pattern speed (0.6c
for C2) reflects the bulk apparent speed of the jet, then we can
solve for the intrinsic speed and angle to the line of sight,
provided we also have an estimate of the Doppler-beaming
factor. A Doppler factor is inferred from the TeV ob-d ∼ 10
servations of this source (e.g., Tavecchio, Maraschi, & Ghi-
sellini 1998). The VSOP observations yield our best measure-
ment of the radio-core brightness temperature, K. This114 # 10
is consistent with a Doppler factor of∼10 if the source is in
equipartition (Readhead 1994), but it is also consistent with
lower Doppler factors if equipartition is violated (Kellermann
2002). If we accept the values of 0.6c and 10 for the apparent
bulk speed and Doppler factor, respectively, then the Lorentz
factor of the Mrk 501 jet is ( ), and its angleg p 5 v p 0.98c
to the line of sight is . Such a small angle to the linev p 0�.7
of sight may be expected of a gamma-ray blazar, although
subluminal apparent speeds are in general not expected (see
the Monte Carlo simulations of Lister 1999).

Alternative kinematics that do not place such tight constraints
on the angle to the line of sight assign the Doppler-factor mea-
surement to the TeV-emitting region (on the light-day size
scale) and the apparent bulk speed to the VLBI jet (on the
light-year size scale) and allow a change in the bulk Lorentz
factor or angle to the line of sight in the intermediate region.
If the jet in the TeV-emitting region has, e.g., andv p 5�

(enforcing ), then a decrease in the Lorentz factorg p 7 d p 10
to would reproduce the observed apparent speed in theg p 2
VLBI jet. Such a deceleration of electron-positron jets close
to the core is proposed by Marscher (1999) for the TeV blazars.
A change in angle to the line of sight, perhaps accompanying
the large bend in the jet seen∼2 mas from the core, cannot
by itself reproduce the observed values; a jet with hasd p 10
a minimum Lorentz factor of 5, and a jet with can onlyg p 5
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have an apparent speed of 0.6c in the large-angle solution for
. Any set of kinematic parameters must also be con-v 1 90�

strained by the one-sided appearance of the source; the example
above with and would have a jet-to-counterjetv p 5� g p 2
brightness ratio greater than∼200, somewhat higher than the
limit that can be placed from our observations.

Similar values for the Doppler factor and apparent jet
speed apply to the other well-studied TeV blazar, Mrk 421
(Piner et al. 1999). From these two sources, it appears that
TeV blazars as a class may either have very small angles
to the line of sight ( ) or may decelerate significantlyv ! 1�
between the TeV-emitting region and the parsec scale.

It is notable that no new component has emerged from the
core after the prolonged TeV high state in 1997. A component
with a speed similar to that of C2 or C3 would now be
∼0.5 mas from the core and would have been detected at the
latter epochs. This suggests that events that give rise to extended
TeV (and associated X-ray) activity are different in nature to
those that result in the production of new VLBI components (see
also Marscher 1999). Mrk 421 and Mrk 501, for which the
inverse Compton component of the SED peaks at TeV energies,
have subluminal component speeds and apparently no new com-
ponent emerging after epochs of TeV activity. In contrast, sources

with the inverse Compton component of the SED peaking at
GeV energies tend to have the emergence of new, superluminal,
VLBI components associated with GeV flaring states (Jorstad et
al. 2001a). The detection of more TeV gamma-ray sources by
the next generation of air Cerenkov telescopes will enable these
apparent trends to be investigated more quantitatively.
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