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ABSTRACT

We study the gas dynamics in barred galaxies using time-dependent hydrodynamic simulations. To achieve
high resolution near the galaxy’s center, the simulations are performed in cylindrical coordinates using a non-
uniform radial grid. The gravitational potential of the bar is assumed to be time-independent and is modeled
using a Ferrers ellipsoid. We find that the gas flow evolves to a quasi-steady state in roughly five bar orbits,
and the general features of this steady state are similar to previous studies. However, we also find that if the
gravitational potential has two inner Lindblad resonances, and if along the major and minor axes the extre-
mum of the Q — k/2 curve between these resonances is at the same radial position, then the gas flow forms a
dense nuclear ring located at the position of the extremum, or approximately 1 kpc for the models studied
here. These two requirements are met by most models which have low axial ratio, ie., thick bars. We study
the development, evolution, and properties of the nuclear rings observed in our simulations in detail. We also
study the effect of the bar on mass inflow into the nucleus of the galaxy. We find this inflow is highest for
models with high axial ratio, i.e., thin, bars (which do not produce nuclear rings), where we find mass inflows

of 0.25 M, yr~* into the inner 0.1 kpc.

Subject headings: galaxies: active — galaxies: kinematics and dynamics — galaxies: nuclei —
galaxies: starburst — galaxies: structure — methods: numerical

1. INTRODUCTION

The gas in barred galaxies has many interesting morphologi-
cal and kinematic features. For example, many barred galaxies
show dust lanes leaving the nucleus along the leading edge of
the bar. These dust lanes have been interpreted as shocks in the
gas flow. Observational evidence that supports this interpreta-
tion includes the observed velocity jumps across the dust lanes
and enhanced radio emission from the dust lanes (see Atha-
nassoula 1992b for a more detailed summary and references).
Yet another interesting feature of many barred galaxies is a
nuclear ring. These rings are the locations of strong density
enhancements in the gas and increased star formation, and
usually occur within 1 kpc of the nucleus. One of the best
examples of a galaxy with a nuclear ring is NGC 1097
(Hummel, van der Hulst, & Keel 1987). Buta (1986) has com-
piled a sample of 30 barred galaxies containing nuclear rings
and has found that rings are usually circular rather than ellip-
tical. Extremely high gas densities are observed in nuclear
rings; for example, Wild et al. (1992) have observed an average
density of 10* cm™3 in the nuclear ring of M82. Elmegreen
(1994) has shown, through a linear instability analysis includ-
ing magnetic fields and gas self-gravity, that nuclear rings
should continue to accrete gas until the point at which their
density exceeds a critical value: p_; = 0.6x>/G, where k is the
epicyclic frequency and G is the gravitational constant. There-
after the ring is unstable to a burst of rapid star formation,
forming a starburst galaxy. Another feature of barred galaxies
worthy of study is the proposal that a bar forces gas into the
nucleus, and that this mass inflow is a possible power source
for some active galactic nuclei (AGNs) (Simkin, Su, & Schwarz
1980; Shlosman, Frank, & Begelman 1989).

Each of the above-mentioned features has been confirmed
by at least one numerical study of the gas dynamics in barred
spirals. Many hydrodynamic simulations—for example, those
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presented by Athanassoula (1992b)—confirm that the dust
lanes are associated with shocks in the gas flow. She investi-
gates the problem of mass inflow by measuring the mass-
averaged radial velocity inside the Lagrangian radius, and
finds inflows on the order of —1 km s~!. Athanassoula also
conducts a rather exhaustive parameter space search to study
the structure of the gas in many different barred potentials.
However, she does not find evidence of nuclear rings in her
simulations, possibly because of a lack of resolution near the
center. Shaw et al. (1993) find that nuclear rings form in their
“sticky particle” simulations, although they do not see the
strong density enhancements at the observed locations of the
dust lanes. They conclude that two inner Lindblad resonances
(ILRs) are required to cause the formation of a nuclear ring.
Friedli & Benz (1993) have studied bar-driven fueling using a
three-dimensional combined N-body and smooth particle
hydrodynamics approach. They find mean values for the gas
accretion rate into the inner 1 kpc of the galaxy of between 0.2
and 7 Mg yr~! with values peaking up to 100 My yr !,
whereas they estimate that a gas accretion rate of between 0.1
and 1000 M yr ™! is necessary to power an AGN.

In this work we study the gas dynamics in barred galaxies
using a state-of-the-art grid-based hydrodynamics algorithm
which is formulated in cylindrical coordinates to provide high
resolution near the galaxy’s center. The primary motivations
for carrying out this project were to investigate the mechanism
of bar-driven fueling by direct measurement of the mass inflow
rate into a small area around the nucleus, and to study the
morphological features of the gas (such as nuclear rings) in the
inner regions of barred galaxies. This is the first such study to
use a grid-based hydrodynamics algorithm formulated in
cylindrical coordinates, and hence these simulations are ideal
for studying phenomena occurring in the inner regions of the
galaxy. For example, we are able to measure the mass inflow
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rate into the inner 0.1 kpc of the galaxy (which is 10 times
closer to the nucleus than the values quoted by Friedli & Benz
1993), while the peak resolution of our simulations at a dis-
tance of 0.1 kpc from the nucleus is 2 pc (which is 50 times
higher than the resolution of Athanassoula’s simulations at the
same location).

This paper is organized as follows. In § 2 we discuss the
numerical methods, in § 3 we give the gravitational potential
used to describe the galaxy, in § 4 we present the results of our
simulations, and in § 5 we present our conclusions.

2. NUMERICAL METHODS

We use the code CMHOG written in 1991 by one of us
(3. M. S.) to compute all simulations presented here. CMHOG
is an implementation of the piecewise parabolic method (PPM)
algorithm in its Lagrangian remap formulation (Colella &
Woodward 1984) for gas dynamics. The code solves the fluid
equations in the following four steps:

1. Interpolates values of the variables at the zone edges of
the fixed Eulerian grid.

2. Solves a Riemann problem to find the average velocity
and pressure at the zone edge during the time step.

3. Uses this velocity to shift the grid into a Lagrangian
frame of reference and update the fluid equations.

4. Interpolates the values of the variables at the zone edges
of the Lagrangian zones and then remaps the variables back
onto the fixed Eulerian grid.

All interpolations are third order (parabolic). The original
version of this code has been used for a number of astro-
physical applications, and has been extensively tested with, e.g.,
shock tubes, advection tests, and the strong shock test suite of
Woodward & Colella (1984). The code required several major
changes to make it suitable for simulating galaxies, including
conversion to cylindrical coordinates, changing to an isother-
mal equation of state, and addition of new body forces. We will
briefly describe each of these changes after first giving a general
description of the simulation properties.

2.1. Simulation Properties

All simulations were carried out using a two-dimensional
cylindrical grid which extends from 0.1 to 16 kpc in radius. The
boundary at 16 kpc is reflecting, while the boundary at 0.1 kpc
is outflow (mass which crosses the inner boundary is con-
sidered lost). The grid is staggered in r, so that the zones
remain square throughout the grid (i.e., Ar = rA¢ everywhere
on the grid). This implies that the resolution at the center is 160
times better than the resolution at the outer edge. The numeri-
cal viscosity will therefore be higher at the outer edge, but
because of the PPM algorithm’s intrinsically small numerical
viscosity we find that it is still negligible (see § 2.2.3). The calcu-
lations were carried out on a half-plane constructed by making
a cut through the origin along the bar major axis. We assume a
reflection symmetry about the origin to obtain the solution
over the entire 2n radians. We also rotate the grid at the
pattern speed of the bar, so that the bar remains fixed on the
grid.

All simulations were done at one of two different resolutions,
which will hereafter be referred to as high and low resolution.
Low-resolution runs have 67 radial zones by 40 angular zones
and have a resolution of 8 pc at the inner boundary and 400 pc
at the end of the bar. High-resolution runs have 251 radial
zones by 154 angular zones and have a resolution of 2 pc at the
inner boundary and 100 pc at the end of the bar. The high-

resolution run requires quite a large number of time steps,
about 120,000, to complete a 2 Gyr run. This is due to the fact
that the zones near the origin are very small, so the time
required for gas to cross one of these zones is small also. The
high-resolution run has a time resolution of about 17,000 yr
per time step.

Each simulation is initialized by setting the gas density to be
uniform everywhere and the gravitational potential to be
axisymmetric. The gas is initialized to be orbiting at its circular
velocity in this potential. The bar is then added in slowly, over
a time of 1 x 108 yr (or half a bar revolution), while keeping
the total mass of the system constant. The bar is added in this
way in order to avoid the violent shocks which occur when the
bar is suddenly introduced. The simulation is then carried out
to a time of 2 Gyr, or 10 bar revolutions, by which time the gas
behavior has stabilized. The sound speed is kept constant at 5
km s~ ! during the simulation.

The initial surface density of the gas has been set equal to 10
M pc~ 2 for all of the runs. This implies a total gas mass of
8 x 10° M, or a ratio of total gas mas to total stellar mass of
1/19. Since the stellar density is sharply peaked toward the
center of the galaxy while the initial gas density is constant, the
ratio of gas mass to stellar mass varies with radius. For
example, between radii of 0.5 and 1.0 kpc, in the area of the
nuclear ring, the initial ratio of gas mass to stellar mass is only
1/552.

2.2. Changes to the Code
2.2.1. Cylindrical Coordinates

A cylindrical grid has naturally high azimuthal resolution
near the origin and coarser azimuthal resolution at large radii.
Thus a cylindrical grid is most suitable for investigating phe-
nomena occurring near the nucleus, where a Cartesian grid
would require a large number of uniform zones to achieve
comparable resolution. For example, our highest resolution
run simulates a half-plane of a 16 kpc galaxy using approx-
imately 40,000 zones. This gives us a resolution of 2 pc at the
inner boundary (0.1 kpc). A uniform Cartesian grid would
require (32/0.002) x (16/0.002) ~ 10® zones to achieve the
same resolution. Since the code performs optimally for square
zones, we stagger the radial grid lines so that Ar =rA¢
throughout the grid.

A difficulty which arises when trying to use PPM in cylin-
drical coordinates is that in this method the fluid variables are
defined as the volume-averaged values within the zones, while
the PPM interpolations are based at the geometrical center of
the zones. In Cartesian coordinates these two locations are the
same, but in cylindrical coordinates the volume-averaged
center in r is displaced toward larger radii from the geometrical
center in r. We use the prescription given by Blondin & Lufkin
(1993) to extend the PPM algorithm to cylindrical coordinates.
With this extension, the truncation errors near coordinate sin-
gularities are substantially reduced but are not entirely elimi-
nated. Thus, we avoid carrying the simulation all the way
down to r = 0. Instead we set the inner boundary at 0.1 kpc,
which is a large enough number of zones away from the origin
(13 zones for our worst resolution) that truncation errors are
avoided.

2.2.2. Isothermal Equation of State
The real multiphase interstellar medium is complex (e.g.,
McKee & Ostriker 1977) and would be difficult to model in a

simulation of this sort. We assume that the large-scale mor-
phological features in the gas will be approximated correctly if
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we assume the galaxy contains an ideal isothermal gas. We
have modified the PPM algorithm for an isothermal equation
of state by independently developing a Riemann solver for an
isothermal gas. This solver is identical to that described by
Balsara (1993) for the Lagrangian plus remap version of PPM.
We use the flattener described by Balsara (1993) to smooth
postshock oscillations in strong, standing shocks which can
arise as a result of the insufficient numerical viscosity.

2.2.3. Addition of Forces

In order to simulate the gas dynamics in barred galaxies in a
rotating frame of reference, both pseudo- and gravitational
forces had to be added to the code. Pseudo-forces are needed
because of the cylindrical coordinate system. They correspond
to the centripetal force felt by fluid elements moving along
curvilinear grid lines.

The forces due to gravity were calculated from the fixed
stellar potential discussed in the next section. Gas self-gravity
is neglected in these simulations. Since the potential of the bar
is constant in time, forces due to gravity need only be calcu-
lated once at the beginning of the simulation. We applied the
forces by the same method as that used by the VH-1 (Virginia
Hydrodynamics I) code (J. M. Blondin 1992, private
communication). This involves knowing the forces at the center
of the Eulerian zones and the centers of the Lagrangian zones
so that the time-averaged force during the time step can be
applied. Since the fluid variables are in general not known at
the centers of the Lagrangian zones, we used linear inter-
polation to find gravity and the required velocities at these
locations.

A number of test problems were run to check the validity of
these three changes to the code. The radial outflow problem
described by Blondin & Lufkin (1993) to check the radial
advection was run, along with one- and two-dimensional cylin-
drical shock tubes. Another particularly relevant simulation is
a galaxy of uniform density in Keplerian rotation in an axisym-
metric potential. In this case the density should remain
uniform throughout the run. This test was performed, and it
was found that the density did remain approximately constant
and that there was negligible mass inflow due to numerical
viscosity across the inner boundary.

3. THE POTENTIAL

For these simulations we used the model of Athanassoula
(1992a) to describe the gravitational potential. An extensive
description of this potential, including many orbit plots, is
given in this reference. The model contains three components:
a disk, a bulge, and a bar. The disk is a Kuzmin-Toomre disk
(Kuzmin 1956; Toomre 1963) of surface density

o(r) = (v3/2nGr)(1 + r*/r}) "%, 1)

where the constants v, and r, are v, =200 km s~ and ry =
14.1 kpc. The bulge has a volume density of

p(r) = p1 + r?/r})15 . @

The parameters p, and r,, which describe the central density
and the radius of the bulge, are set by the four input param-
eters to the potential as described below. The bar is described
by a Ferrers ellipsoid oriented along the y-axis of volume
density

_ Jpo(l =g? forg<1,
=0 elsewhere ,

©)
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where g? = y*/a® + (x* + z%)/b? and x, y, and z are the Carte-
sian coordinates. The exponent n is equal to 1 for the standard
model; we also consider models with n = 2. The semimajor
axis of the bar is kept fixed at a = 5 kpc. The model can now be
completely determined by setting the values of four input
parameters and demanding that the total mass within 10 kpc
be a constant. The four input parameters are the axial ratio a/b
of the bar (where a and b are the semimajor and semiminor
axes, respectively), the quadrupole moment of the bar Q,,, the
Lagrangian or corotation radius r;, and the central concentra-
tion p. = po + py.

These four parameters completely determine the model
through the following steps: Given values for the four param-
eters a/b, Q,,, r., and p., and with fixed values for the semi-
major axis a and exponent n of the density distribution of the
bar, we first determine the mass of the bar, M,, via

Om = M,a’[1 — (a/b)"21/(5 + 2n) . @)
The central density of the bar, p,, is then given by inverting
M, =22""31ab?p  T(n + DI(n + 2)/T2n + 4) . )

Since the sum of the bulge and bar central densities p, is an
input parameter, the bulge central density p, is just p, =
pP. — po- The bulge scale length r, is then found through the
constraint that all models have the same total mass within
10 kpc.

Since there is a one-to-one correspondence between the
Lagrangian radius and the pattern speed of the bar, setting the
Lagrangian radius is equivalent to setting the bar pattern
speed. The values of these four input parameters for the stan-
dard model are a/b = 2.5, Q,, = 4.5 x 10'°® M kpc?, r, = 6.0
kpc, and p, = 2.4 x 10'° M, kpc™3. A Lagrangian radius of 6
kpc implies a bar pattern speed of 33 km s~ ! kpc™!, or a bar
revolution time of 1.9 x 10% yr.

Figure 1 shows a plot of some of the characteristics of this
standard model potential. The plot of angular velocity versus
radius shows the local Q — x/2, Q, and Q + «/2 curves along
the bar major axis (solid line) and the bar minor axis (dotted
line). The ILRs occur where the horizontal line representing the
pattern speed of the bar intersects the Q — «/2 curve. Note that
this standard model has two ILRs. The spike in the Q — k/2
curve along the bar major axis at 5 kpc is due to the bar ending
at this point. It is somewhat softened if an n = 2 bar is used.

The density distributions for the three components of this
model can be integrated to get a mass for each component. The
total mass of each component interior to 16 kpc for the stan-
dard model is 4.1 x 10'° M, for the bulge, 9.8 x 10'° M, for
the disk, and 1.5 x 10'® M, for the bar. This gives a total mass
interior to 16 kpc of 1.54 x 10** M.

4. RESULTS

Table 1 gives pertinent data for all the runs discussed in this
paper. Missing identification numbers refer to runs which are
not important for topics discussed in this paper. One of the
runs (run 2) was carried out to a time of 4 Gyr to ensure that
the 2 Gyr cutoff was indeed adequate. Another of the runs
(Run 1) also included an equation designed to mimic gas recy-
cling by density depletion due to star formation and density
enhancement due to stellar mass loss. This will be discussed
more in the following section. Before going on to present spe-
cific results regarding the nuclear rings and the mass inflow, we
will first discuss some results for the standard model, which
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FiG. 1.—Standard model potential. Numerical parameters describing the standard model are given in § 3. In all four plots the solid line shows a slice along the bar
major axis, while the dotted line shows a slice along the bar minor axis. (@) Gravitational potential vs. radius. (b) Rotational velocity in km s~ ! vs. radius. (c) Stellar
mass density vs. radius. (d) Q + «/2 (rightmost curves), Q (middle curves), and Q — «/2 (leftmost curves), where Q is the angular rotational velocity (km s~* kpc™*) and

K is the epicyclic frequency.

was defined in § 3 as having values for the four input param-
eters describing the potential of a/b = 2.5, Q,, = 4.5 x 10*°
Mg kpc?, r, = 6.0kpc,and p, = 2.4 x 10'° M kpc™3.

4.1. General Results for the High-Resolution Standard Model

Figure 2 shows some results from the high-resolution simu-
lation at a time late in the run. Figure 2a shows a logarithmi-

cally scaled image of the gas density. The plot extends to 8 kpc
on either side of the center, while the bar extends to 5 kpc on
either side, so the entire bar is included. The bar is oriented
vertically along the y-axis and is rotating in a counterclockwise
direction. The density values saturate for a density about a
factor of 75 higher than the initial density. The central black
dot represents the inner boundary. At this point in the run the

TABLE 1
PARAMETERS OF THE SIMULATIONS

Time?* 0. re Pe Gas
Identification Resolution (Gyr) n ab (10" Mgkpe®)  (kpc)  (10'° My kpc™®)  Recycling

Low 2 125 4.5 6.0 24 Yes
Low 4 1 25 45 6.0 24 No
High 2 1 2.5 45 6.0 24 No
Low 2 1 5.0 4.5 6.0 24 No
Low 2 1 2.5 4.5 6.0 0.8 No
Low 2 1 2.5 45 6.0 0.6 No
Low 2 1 2.5 4.5 6.0 04 No
Low 2 2 2.5 45 6.0 24 No

® Time at which simulation is stopped.
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F1G. 2.—Results for the high-resolution standard model simulation. () Logarithmically scaled image of the gas density. The plot extends to 8 kpc on either side of
the center, while the bar extends to 5 kpc on either side, so the entire bar is included. The bar is oriented vertically along the y-axis and is rotating in a
counterclockwise direction. The density values saturate for a density about a factor of 75 higher than the initial density. Whiter colors indicate areas of higher density.

(b) Velocity field in frame of reference rotating with the bar.

gas inside the bar has settled into a steady state. Due to hydro-
dynamic instabilities the gas flow directly outside the bar is not
perfectly steady, but it does not show any major structural
changes with the passage of time.

One of the most striking features on this image is the nuclear
ring. Formation of the nuclear ring can be understood as an
effect of the nonaxisymmetric potential of the bar. The bar
potential produces a net torque on the gas which acts to drive
the gas in toward the center (Schwarz 1981). In some potentials
the gas settles into a nuclear ring between two ILRs; in other
potentials it continues moving inward to the nucleus. Detailed
properties of the nuclear ring in various potentials will be dis-
cussed in the next section. Other features are also clearly visible
in Figure 2a. There are two narrow shocks which come out
from the nuclear ring along the leading edge of the bar. These
shocks, which are also evident in Athanassoula’s simulations,
can be identified with the observed locations of the dust lanes
in real barred galaxies. The regions immediately surrounding
the bar show a very low gas density, since here the gas has been
swept up by the bar and is being funneled down into the
nuclear ring. The narrow, dense streams of gas which emanate
from each end of the bar major axis are disrupted into a
complex flow at about the corotation radius. The reason for
this can be seen in Figure 2b. This plot shows the velocity field
in a frame of reference rotating with the bar. An outline of the
bar has been overlaid on the plot to clarify its location. The
corotation radius is easily visible as the point at which
the velocity vectors have zero magnitude. It can be seen that
the complex streams visible in Figure 2a occur at a location
where the low-density gas is flowing outward and pushing on
the higher density stream. This allows a Rayleigh-Taylor insta-
bility to develop. Moreover, the velocity shear present at the
corotation radius causes the dense stream trailing from the bar

to become Kelvin-Helmholtz unstable as well. If the entire
temporal evolution of the flow is viewed as a movie, the loops
and whorls characteristic of these instabilities, and captured in
this image, are clearly evident.

In order to illustrate the kinematics of the galaxy, in Figure 3
we plot contours of the different components of the velocity
along different lines of sight. Figure 3a plots the contours of the
x-velocity. Since the bar is aligned along the y-axis, this panel
is appropriate to the case where the line of nodes is along the
major axis of the bar. Figure 3b plots contours of the y-
velocity, while Figure 3c shows the simulated radial velocity
contours for a galaxy where the bar has been rotated through
an angle of 45° from its previous alignment along the y-axis,
and the galaxy has been inclined at an angle of 30° to the plane
of the sky.

To verify that the nuclear ring is a physically meaningful
result caused by the form of the gravitational potential, and
not merely a numerical artifact, we have varied the numerical
parameters of the simulations in a number of ways. For
example, we find that the ring occurs at the same physical
location when the position of the inner boundary is changed,
and also when the boundary conditions specifying the rota-
tional velocity across the inner boundary are changed. Several
different boundary conditions were tried, including setting the
rotational velocity in the boundary zones equal to the circular
velocity, setting the rotational velocity to zero, and using linear
extrapolation from the zones outside the boundary. These
changes had negligible effect on the mass inflow. The ring
occurs for bars with an exponent of n = 2, and the ring is stable
over timescales as long as 4 Gyr. We also find that the ring
does not occur in the same radial zone when the resolution is
changed. In the low-resolution run the center of the ring is in
the 29th zone at r = 0.87 kpc, while in the high-resolution run

© American Astronomical Society * Provided by the NASA Astrophysics Data System
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tours for a galaxy where the bar has been rotated through an angle of 45° from
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angle of 30° to the plane of the sky.

the center of the ring is in the 82d zone at r = 0.51 kpc. The
center of the ring does move closer to the peak of the Q — «/2
curve with higher resolution, as is expected. We have found
that the only thing which drastically alters the ring is changing
the gravitational potential; therefore we conclude that ring
formation is due to the form of the potential.

The densities and masses given for the nuclear rings in the

HYDRODYNAMIC SIMULATIONS OF BARRED GALAXIES 513

FiGc. 3b

following section do not include the effects of gas recycling.
They must therefore be considered as overestimates, because in
a real galaxy stars will form in high gas density regions more
efficiently than they will form in low gas density regions, thus
lessening the high-density contrasts seen in the ring. In one of
the runs with a potential identical to the standard model, gas
recycling was mimicked by (Athanassoula 1992b)

dp/dt = a(p? — p?), 6)

where p is the density of gas in the zone, p; is the initial gas
density of 10 M pc~2, and « is a constant equal to 0.03 pc?
Mg! Gyr~'. This equation lowers gas density in zones where
it 1s high, which mimics star formation, and also adds gas
uniformly over the grid, which mimics stellar mass loss. The
constant a sets the timescale for all of the gas to be recycled.
With a equal to 0.03 it will take ~1/(xp;) = 3.3 Gyr for all of
the gas to be recycled.

The gas recycling equation had a rather large effect on high-
density regions, as was expected. Gas densities in the nuclear
ring went down by about a factor of S in the run with the
recycling equation included, as compared with the same run
without the recycling equation. Even though the recycling
equation had a rather large effect, it was not included in the
other runs. As noted by Athanassoula (1992b), equation (6) is
only a rough estimate of gas recycling which attempts to
parameterize the complex processes of both star formation and
stellar mass loss. In this study, we choose to focus on the
fundamental fluid dynamical processes in barred galaxies
without the influence of other parameterized phenomena. The
recycling equation can also cause a spuriously high value for
the mass inflow discussed in § 4.3. The important point to
remember is that since gas recycling was not included, the
density contrasts in our results should be considered as upper
limits.

4.2. Nuclear Rings

By far the most striking feature in the density image of

Figure 2 is the nuclear ring. These rings are observed at various
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radii, shapes, and strengths in many of the simulations we have
run. Figure 4 shows a logarithmically scaled image of the gas
density extending to 1 kpc on either side of the nucleus for the
high-resolution standard model. The bar is again oriented ver-
tically. The structure of the nuclear ring is easily resolved, and
it can be seen that the nuclear ring has a rich structure and
actually resembles a tightly wrapped spiral. By varying the
form of our potential, we have been able to pin-down two
characteristics that our model galaxy must have in order to
form a nuclear ring. These characteristics are the following:

1. The galaxy must have two inner Lindblad resonances.

2. The extrema of the Q — /2 curves along the major and
minor axes between the resonances must be at the same radial
position. Figure 1d shows an example where the extrema are at

Vol. 449

the same radial position, while Figure 8 shows a counter-
example where the extrema are slightly offset.

In order to test the first characteristic, we have lowered the
central concentration of the galaxy until the ILRs disappear. In
order to test the second characteristic, we have raised the axial
ratio of the bar until the peak of the Q — /2 curve along the
bar minor axis shifts noticeably compared with the peak along
the bar major axis. These tests will be discussed in detail in the
following subsections.

Table 2 lists data on the nuclear rings for selected simula-
tions. The time evolution of the ring is given for the high-
resolution run, and a coarse time evolution is listed for the
identical potential low-resolution run. For all other runs, ring
data are given for the ring in the state that it was in at the end

FiG. 4—Logarithmically scaled image of the gas density showing a closeup of the nuclear regions for the high-resolution standard model. The plot extends to
1 kpc on either side of the center. The bar is oriented vertically. The internal structure of the nuclear ring is resolved in this figure.
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TABLE 2
NUCLEAR RING DATA

HYDRODYNAMIC SIMULATIONS OF BARRED GALAXIES

Time

rS

b
Ty

Edges*®

M d

M. B

gas st
Run (Gyr)  (kp)  (kpc) (kpc) 1Mo p/pd  paulpi  (10°Mg) My /M,
1...... 20 0.78 0.85 0.5, 1.1 0.15 5 12 16 1/107
2. 04 0.79 0.88 04,12 0.32 8 21 21 1/66
20 0.83 0.90 04,13 1.0 21 50 23 1/23
4.0 0.83 0.90 04, 1.35 14 27 61 24 1/17
4...... 04 0.68 0.84 0.5, 1.0 0.25 11 66 13 1/52
0.8 0.65 0.70 0.5,0.8 0.31 25 135 8.0 1/26
1.2 0.60 0.61 0.45, 0.7 0.40 4 186 6.8 1/17
1.6 0.54 0.57 04,0.7 0.53 51 207 82 1/15
20 0.51 0.52 04, 0.65 0.62 75 257 6.8 /11
10...... 20 1.0 0.86 04,13 0.20 4.2 16 23 1/113
14...... 20 0.57 0.62 0.25, 1.0 1.2 41 85 19 1/16

* Location of ring center of mass along bar major axis.
® Location of ring center of mass along bar minor axis.
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¢ Approximate inner and outer radii of ring.
4 Mass of gas between inner and outer radii.

¢ Average increase in gas density in ring over initial density.

f Maximum gas density increase for single zone in ring.

8 Mass of stars between inner and outer radii.

of the simulation. An important point to note is that in all
cases the ring is situated between the two ILRs.

4.2.1. Time Evolution of the Ring at High Resolution
for the Standard Model

The five lines listed for run 4 in Table 2 give the time evolu-
tion of the ring in steps of 0.4 Gyr for the high-resolution run.
This time evolution is shown graphically in Figure 5. This
figure shows the density as a function of radius at two slices
through the ring. One slice is along the bar major axis (solid
line), and the other slice is along the bar minor axis (dotted
line).

Initially the ring is elliptical and is elongated along the bar
minor axis. As time goes on, the ring loses its ellipticity and
starts to become circular. The ring is approximately circular at
a time of 1.2 Gyr. During this time the ring also moves inward
and becomes narrower, denser, and more massive. The ring is
not axisymmetric; there are azimuthal density variations
within the ring of factors of 3, with the highest densities
occurring along the bar major axis. At the end of the run the
inward motion of the ring has slowed down, and it appears to
have stabilized at about 0.5 kpc. This is to be expected, since
we would not expect the ring to move past the extremum of the
Q — K/2 curves located at 0.5 kpc.

The ring also becomes more dense with time. This is due to
two effects. The first effect is that the ring is both moving
inward and becoming narrower, thus occupying a smaller area.
The second effect is that at the same time mass is still being
accreted onto the ring from the rest of the galaxy. At the end of
the simulation the mass of the ring is 6.2 x 10® M, and the
gas-to-stars mass ratio inside the ring is 1/11. This would be
massive enough to start having an effect on the stellar orbits;
the potential becomes more axisymmetric, and to first order
more phase space will be available (van Albada & Sanders
1982) for the orbital family that the gas ring occupies (x, ; see,
e.g., Contopoulos & Papayannopoulos 1980).

4.2.2. Central Concentration Comparison

In order to test the idea that ring formation is linked to the
presence of ILRs, we have varied the input parameters so that
the resonances disappeared. The resonances can be made to
disappear by varying either the Lagrangian radius or the

central concentration. Varying the Lagrangian radius is equiv-
alent to varying the pattern speed of the bar. When the bar
rotates fast enough, the peak of the Q — /2 curve is below the
bar pattern speed and there are no ILRs. From the angular
velocity curve of Figure 1, pattern speeds of more than 90 km
s~ ! kpc~! will have no resonances. However, this high pattern
speed would place the corotation radius at 2.5 kpc, well inside
the bar. We wish to avoid such small values for the corotation
radius, because according to Athanassoula (1992b) significant
structural changes occur in the gas flow for values of the
Lagrangian radius outside the range r, = 1.2a + 0.2a; thus we
choose to vary the central concentration instead.

When the central concentration is decreased, the rotational
velocity in the inner kiloparsec of the galaxy is also decreased.
Lowering the rotational velocity produces a lowering of the
peak of the Q — x/2 curve and will eventually lead to loss of the
ILRs. The effect lowering the central concentration has on the
resonances is shown in Figure 6, which shows plots of Q,
Q + /2, and Q — x/2 along the bar major axis (solid line) and
the bar minor axis (dotted line) for four different central con-
centrations. Figure 6a is for the standard central concentration
of 2.4 x 10'® My kpc~3. The central concentration is then
lowered through 8 x 10° (Fig. 6b) and 6 x 10° (Fig. 6¢) to
4 x 10° M kpc™3 (Fig. 6d). There are still two ILRs at a
central concentration of 8 x 10°, although the peak of the
Q — k/2 curve has been greatly reduced. At a central concen-
tration of 6 x 10° there are just barely two ILRs. At 4 x 10°
the Q — «/2 curve along the bar major axis no longer intersects
the bar pattern speed, and there are no ILRs.

Figure 7 shows logarithmically scaled density images for
high-resolution simulations done with each of these central
concentrations at a time of 2 Gyr. Images have the same linear
and density scales as in Figure 2. The ring can be clearly seen
to fade away as the central concentration is lowered. Data on
the ring for the simulation with a central concentration of
8 x 10° M, kpc™? are listed in Table 2 under run 10. The
numbers given for mass and density clearly show the decrease
in strength of the ring. The simulations at the two lowest
central concentrations did not form nuclear rings. We can con-
clude from this that the ring will be stronger the higher the
peak of the Q — x/2 curve is above the pattern speed of the bar.
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T ] where the ring is circular.
g 1oot 4 4.2.3. Axial Ratio and n = 2 Comparison
ER : The simulations which investigate the effect of changing the
[ ] axial ratio and the exponent of the density distribution of the
501~ ] bar were done at low resolution, so we must compare these
X 1 with the standard model simulation at low resolution. The
of N ' 1 change from high to low resolution in the standard model does
00 o2 or . os 0.8 10 cause some changes in the ring, as can be seen in the entries for
Rodius (kpc) run 2 in Table 2. The important changes are that at low
FIG. 5e resolution the ring is broader, as we would expect for a lowered

FiG. 5—Time evolution of the nuclear ring for the high-resolution run:
(a—e: t = 04, 0.8, 1.2, 1.6, and 2.0 Gyr, respectively). Solid lines show density
cross sections along the bar major axis. Dotted lines show density cross sec-
tions along the bar minor axis.

resolution, and it is consequently less dense.

Interestingly, when the axial ratio of the bar is raised from
2.5 to 5.0, the gas no longer settles into a nuclear ring but
instead streams straight down into the nucleus. An image of
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F1G. 6—Q + x/2 (rightmost curves), Q (middle curves), and Q — /2 (leftmost curves) along the bar major axis (solid line), and along the bar minor axis (dotted line)
for four different central concentrations (in units of M kpc™3). Q is the angular rotational velocity (km s™! kpc™!), and « is the epicyclic frequency. (a)

.= 2.4 x 101°,(b) p, = 8 x 10%,(c) p, = 6 x 10°,(d) p, = 4 x 10°.

the gas density, along with plots of Q, Q + /2, and Q — /2
are shown in Figure 8 for this high axial ratio bar. The density
image has the same linear and density scales as in Figure 2. The
only important difference in the Q — k/2 curve between this
bar and the lower axial ratio bar (Fig. 1) is that for this bar the
peak of the Q — k/2 curve along the minor axis is shifted
outward by about half a kiloparsec with respect to the peak of
the curve along the major axis. Evidently this shift in the peaks
of the Q — /2 curves makes it impossible for gas to settle into
a ring formation between the resonances, and the gas falls
down into the nucleus. Thus we expect nuclear rings to form
only in galaxies with lower axial ratio bars.

We have also computed a simulation in which the exponent
n in the formula for the bar density was equal to 2 instead of 1.
This implies that the bar is more sharply peaked in density
toward the center. The central density of this bar is greater
than for the n = 1 bar, but falls off more rapidly with distance
from the center. The ring formed in this case has moved inward

somewhat, is a bit narrower, is about twice as dense, and is
slightly more massive than the comparable ring formed by the
n = 1 bar. Evidently the n = 2 bar is more effective at trapping
gas in a nuclear ring.

4.2.4. Critical Densities

It is interesting to compare the final density of the ring with
the critical density for collapse predicted by Elmegreen (1994).
Using the formula p,;, = 0.6x%/G, where k2 = 4Q? + rdQ?/dr,
Q% =14 x 105 s72, and dQ%/dr = —4.5 x 10° s~ 2 kpc™! at
r = 0.5 kpc, we obtain a value for the critical density of p.,; =
47 Mg pc™ 3 or p,,; = 1900 H atoms cm 3. Assuming the gas
has an exponential scale height of about 100 pc, our initial
central volume density is 0.05 Mg pc™3. This implies that a
density increase of roughly a factor of 1000 would reach the
critical density.

None of the simulations come close to reaching such a large
density increase. Even if the simulations were allowed to con-
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FiG. 7.—Logarithmically scaled images of gas density comparing four different central concentrations (units of M, kpc™3). (a) p, = 2.4 x 10'°, (b) p, = 8 x 10°,
() p. = 6 x 10°,(d) p, = 4 x 10°. Images extend to the same distance from the center and have the same density scale as in Fig. 2.

tinue to run, the mass accretion rate onto the ring is slow
enough that this density would not be reached in any reason-
able amount of time. However, very high densities of this sort
are observed in real starburst galaxies. For example, M82 has
an average density of 10* cm 2 in its nuclear ring (Wild et al.
1992). Obviously something is causing much faster and stron-
ger ring growth than we have observed in these simulations.
Of course, these simulations have neglected cooling and gas

self-gravity. The inclusion of these factors would probably lead
to more rapid ring growth.

4.3. Mass Inflow

The most accepted mechanism for creating the power
observed in AGNs involves the accretion of matter onto a
supermassive black hole at the galaxy’s center. To create the
observed luminosities requires a large rate of mass accretion. A
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FiG. 8b
F1G. 8.—(a) Q + «/2 (rightmost curves), Q (middle curves), and Q — x/2 (leftmost curves) along the bar major axis (solid line) and along the bar minor axis (dotted

and « is the epicyclic frequency. (b) Density image for the 5:1 axial ratio bar. The

image extends to the same distance from the center and has the same density scale as in Fig. 2.

proposed mechanism for generating this mass accretion sup-
poses that a spinning bar causes gas to fall into the nucleus. We
have tested this mechanism by measuring the rate of mass
inflow into the inner 100 pc of the galaxy for each simulation.

The cylindrical grid which we employ makes this code ideal
for studying this mass inflow phenomenon. Our numerical
simulations use a circular inner boundary at a relatively small
distance of 100 pc from the origin. The fact that this boundary
is circular means that the flow around and through this bound-
ary is smooth, which might not be the case for a rectangular
boundary. Since the zones decrease in size toward the origin,
we have excellent resolution in the nuclear regions.

When mass crosses this inner boundary, we assume it is lost
to the simulation. In a real galaxy the buildup of large amounts
of gas mass in the nucleus would eventually have some effect
on the potential and would change both the gas flow patterns
and the stellar orbits. We do not consider this effect here. Table
3 lists the measured mass inflow rates for each of the runs. The
values quoted in Table 3 are for an initial gas density of 10 M,
pc~2 The mass inflow rate is directly proportional to the
assumed value of the initial gas density.

TABLE 3
Mass INFLOowW RATES
Inflow* ) Inflow®
Identification ~ (Mg yr™') | Identification (Mg yr™h)
) 9.2 x 1073 10 ..ol 2.7 x 107°
2 54 x 10~% 11 . 9.4 x 1073
L 48 x 1073 12 i 9.5 x 1073
8 0.25 14 ... 9.6 x 10~°

® Average mass inflow through inner 100 pc after 1 Gyr (M,
yr~h).

There is a substantial inflow rate of about 5 x 107> Mg
yr~! even from the standard model runs which form the
nuclear rings (runs 2 and 4). There is a slight difference in mass
inflow between runs 2 and 4 caused by the different resolutions.
Evidently the nuclear ring is not really a true ring but more
closely resembles a very tightly wrapped spiral. This is true in
the sense that material enters the ring along the outer bound-
ary and then eventually leaves again, crossing the ring inner
boundary and heading toward the nucleus. Of course, the rate
of mass leaving the ring is much slower than the ring’s rate of
mass accretion, which allows the ring to grow in mass and
density. Although there is some mass inflow for these runs, the
inflow is not sufficient to power any kind of AGN.

The values quoted for the mass inflow are the average values
after 1 Gyr. The first gigayear of the simulation is ignored in
order to give the galaxy a change to stabilize after the bar has
been added. Figure 9 shows how the mass inflow rate changes
with time for the standard model simulation carried out to 4
Gyr (run 2). The mass influx shows a sharp peak immediately
after the bar is added and then slowly comes down to a con-
stant value. From 1 to 4 Gyr, the mass flux then stays relatively
constant.

Run 1 has a potential identical to that of runs 2 and 4, the
only difference being that run 1 includes the gas recycling
equation. When the recycling equation is included, the mass
flux is about twice as high as when the equation is not
included. This is because the recycling equation adds gas uni-
formly over the grid. Since mass is constantly being removed
from the zone adjacent to the inner boundary anyway, this
equation produces mass loading on the innermost zones and
causes a higher mass flux across the inner boundary. Lowering
the central concentration as was done for run 10, run 11, and
run 12 produces a much lower mass inflow for run 10. This is
due to two causes. The nuclear ring which forms in this run
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F1G. 9.—Mass flux entering the inner 100 pc for the 4 Gyr run (run 2)

keeps material from reaching the nucleus, and, since the central
concentration is lower, material inside the ring is not strongly
attracted to the nucleus anyway. Runs 11 and 12, which do not
form nuclear rings, have relatively higher mass inflows, as
would be expected. Run 14, which was run using a bar with an
exponent of 2, has a significantly lower mass flux than the
corresponding n = 1 run. An n = 2 bar is more sharply peaked
in density toward the center and has a more dense and massive
nuclear ring than the corresponding n =1 run. These facts
imply that gas has a harder time leaving the n = 2 ring and
heading in toward the nucleus.

By far the most interesting entry in Table 3 is the entry for
run 8, which had a very thin bar (5:1 axial ratio). The mass
inflow for this case is about 5000 times higher than the corre-
sponding run with a thick bar (2.5:1 axial ratio). The mass
inflow rate is this high because a nuclear ring does not form
with a 5:1 axial ratio bar (see § 4.2.3). Instead of getting
trapped in a dense nuclear ring, the gas is free to stream
directly down into the nucleus. A sustained gas accretion rate
of 0.1 Mg yr™! < M < 1000 Mg yr~! is necessary to power
AGNs (Friedli & Benz 1993). This gas accretion rate of 0.25
M, yr~ ! should be sufficient to power a low-luminosity AGN.

The mass of gas in the entire galaxy is 8 x 10° M, so if this
inflow rate stays constant, then over a typical galaxy lifetime of
10 Gyr approximately one-third of the gas in the galaxy would
have entered the nucleus. However, it is unlikely that this rate
of mass inflow is kept up for that long a period of time. Friedli
& Benz (1993) have calculated by coupled N-body and hydro-
dynamic simulations that once about 10° M of gas has
entered the nucleus, the gravitational potential is altered
enough that the stellar orbits change and the bar is destroyed.
So at the rate of mass inflow we observe in run 8, the bar-
driven fueling would operate for about 4 Gyr until the bar was
destroyed and mass accretion stopped. We can conclude from

these runs that bar-driven fueling is most effective in galaxies
with thin (high axial ratio) bars. Galaxies with thicker bars
tend to form nuclear rings, and these rings inhibit gas from
reaching the nucleus. High axial ratio bars do not form rings,
and the gas is instead driven into the nucleus.

Another way to characterize the mass inflow is to measure
the mass-averaged radial velocity inside the Lagrangian radius.
This number should be negative for net mass inflow. For the
standard model runs with nuclear ring formation, we obtain
values of about —1 km s~ for the mass-averaged radial veloc-
ity. This value agrees with previous values for the parameter
given by Athanassoula. For the thin bar with the high mass
inflow we obtain —8 km s~! for the mass-averaged radial
velocity.

5. CONCLUSIONS

Several of the interesting phenomena which occur in barred
galaxies are located in and around the nucleus. Two of these
are the formation of nuclear rings and the powering of active
nuclei by bar-driven fueling. We have studied both of these
processes using a hydrodynamics code which is ideally
suited for investigating the nuclear regions. The code is formu-
lated in cylindrical coordinates giving excellent resolution near
the center.

We found that there were two requirements the potential
had to satisfy in order for a nuclear ring to form. These require-
ments are that a galaxy must have two. ILRs and the extrema
of the Q — k/2 curves along the bar major and minor.axes
between the ILRs must be at the same radial position. These
requirements are satisfied for centrally concentrated galaxies
with low axial ratio bars. Thus we would expect nuclear rings
to form in these systems. The only simulation which showed
significant mass inflow into the nucleus was the simulation
with the 5:1 axial ratio bar. This system had an inflow rate of
0.25 My yr~!, which is sufficient to power a low-luminosity
AGN. Therefore, we conclude that bar-driven fueling is most
effective in systems with high axial ratio bars.

This work could be extended in several interesting direc-
tions. We are currently trying to add a spiral potential off the
end of the bar to investigate what effects spiral arms would
have on the gas flow. It would also be interesting to do a full
three-dimensional simulation so that the distribution of gas
out of the galactic plane could be studied. And, of course,
solving the barred galaxy problem exactly requires coupling an
N-body code to the hydrodynamics code, so that the evolution
of the stars and gas can be followed together.

The computations were performed at Pittsburgh Super-
computing Center. This work was supported in part by the
NASA High Performance Computing and Communications
Initiative through grant NAG-4202 to James Stone.
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