Publication Title

Discrete Mathematics

Volume

126

Publication Date

1994

Document Type

Article

Issue

1

First and Last Page

281-291

Abstract

We give various conditions on pinched-torus polyhedral maps which are necessary for their graphs to be embeddable in the projective plane. Our other main result is that even if the graph of a polyhedral map in the pinched torus is embeddable in a projective plane, the map induced by the embedding cannot be polyhedral, but must have all faces bounded by cycles. Finally, we give a class of examples of graphs which have polyhedral embeddings on the pinched torus and also on orientable surfaces of arbitrary high genus.

Share

COinS