Publication Title

Astrophysical Journal

Volume

553

Publication Date

2001

Document Type

Article

Issue

2

First and Last Page

968-977

Abstract

The physical conditions in the inner parsec of accretion disks believed to orbit the central black holes in active galactic nuclei can be probed by imaging the absorption (by ionized gas in the disk) of background emission from a radio counterjet. We report high angular resolution VLBI observations of the nearby (~40 Mpc) radio galaxy NGC 4261 that confirm free-free absorption of radio emission from a counterjet by a geometrically thin, nearly edge-on disk at 1.6, 4.8, and 8.4 GHz. The angular width and depth of the absorption appears to increase with decreasing frequency, as expected. We derive an average electron density of ~104 cm-3 at a disk radius of about 0.2 pc, assuming that the inner disk inclination and opening angles are the same as at larger radii. Pressure balance between the thermal gas and the magnetic field in the disk implies an average field strength of 10-4 G at a radius of 0.2 pc. These are the closest in free-free absorption measurements to date of the conditions in an extragalactic accretion disk orbiting a black hole with a well-determined mass. If a standard advection-dominated accretion flow exists in the disk center, then the transition between thin and thick disk regions must occur at a radius less than 0.2 pc (4000 Schwarzschild radii).

Included in

Physics Commons

Share

COinS